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Overview

1.Main Lines of Research and Applications (D. Pardo)

– Previous work

– Main features of our technology

2. Application 1: Tri-Axial Induction Instruments (M. J. Nam)

3. Application 2: Dual-Laterolog Instruments (M. J. Nam)

4. Multi-Physics Inversion (D. Pardo)

5. Sonic Instruments (L. Demkowicz)
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Previous Work
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MOST (OIL-INDUSTRY) GEOPHYSICAL PROBLEMS

Type of Problems We Can Solve with our hp-FEM software
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Main Features of Our Technology

1. Self-Adaptive Goal-Oriented hp-Refinements

2. Fourier Finite-Element Method

3. Parallel Implementation
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Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size
h and the polynomial order of 
approximation p throughout
the grid.

Optimal grids are automatically 
generated by the hp-algorithm.

The self-adaptive goal-oriented 
hp-FEM provides exponential 
convergence rates in terms of 
the CPU time vs. the error in
a user prescribed quantity of
Interest.



6

8th Annual Formation Evaluation Consortium Meeting, 2008

3D Deviated Well
Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (ζ1, ζ2, ζ3)
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3D Deviated Well
Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (ζ1, ζ2, ζ3)

Constant material coefficients in the quasi-azimuthal direction ζ2

in the new non-orthogonal system of coordinates!!!!
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3D Deviated Well

For each Fourier mode, we obtain a 2D problem. 
Each 2D problem couples with up to five different 2D 
problems corresponding to different Fourier modes, 
therefore, constituting the resulting 3D problem.
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When we use 9 Fourier 
Modes for the Solution:

Ai,j : represents a full 2D problem for each Fourier basis function
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3D Deviated Well

For each Fourier mode, we obtain a 2D problem. 
Each 2D problem couples with up to five different 2D 
problems corresponding to different Fourier modes, 
therefore, constituting the resulting 3D problem.
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3D Parallelization Implementation

Distributed Domain
Decomposition Shared Domain Decomposition!!



SELF-ADAPTIVE hp FINITE-ELEMENT 
SIMULATION OF MULTI-COMPONENT 
INDUCTION MEASUREMENTS 
ACUIRED IN DIPPING, INVADED, AND 
ANISOTROPIC FORMATIONS

8th Annual Formation Evaluation
Research Consortium Meeting 
August 14-15, 2008

M. J. Nam, D. Pardo, and C. Torres-Verdín, 
The University of Texas at Austin
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Overview

1. Main Lines of Research and Applications (D. Pardo)

– Previous work

– Main features of our technology

2. Application 1: Tri-Axial Induction Instruments (M. J. Nam)

3. Application 2: Dual-Laterolog Instruments (M. J. Nam)

4. Multi-Physics Inversion (D. Pardo)

5. Sonic Instruments (L. Demkowicz)
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Outline

•Introduction to Tri-Axial Induction

•Method

•Numerical Results:

– Verification of 3D Method for Tri-Axial 
Induction Tool

– Dipping, Invaded, Anisotropic Formations

•Conclusions
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Tri-Axial Induction Tool

θ: dip angle

α: tool orientation angle

L = 1.016 m (40 In.)

Operating frequency: 20 kHz

Hxy
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3D Source and Receiver (Delta Functions)

-180 -90 -45 0 45 90 180
-0.5

0

0.5

1

1.5

2

2.5
Source times Receiver

in
te

ns
ity

 φ in degrees

 

 

Mx with 9 modes
Hx with 9 modes
Mx times Hx

-180 -90 -45 0 45 90 180
-0.2

0

0.2

0.4

0.6

0.8
Source times Receiver

in
te

ns
ity

 φ in degrees

 

 

Mx with 5 modes
Hx with 5 modes
Mx times Hx

Coupling between source and receiver:
less Gibb’s phenomenon



17

8th Annual Formation Evaluation Consortium Meeting, 2008

Method

Combination of:

1. A Self-Adaptive Goal-Oriented hp-FEM

for AC problems

2. A Fourier Series Expansion

in a Non-Orthogonal System of Coordinates

3. Parallel Implementation
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Verification of 2.5D Simulation (Hxx= Hyy)
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em1D: K. H. Lee 1984, pers. comm.

Converged solutions
with 3 Fourier modes
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Verification of 2.5D Simulation (Hzz)
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Verification of 2.5D Simulation (Hxy= Hyx)
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Verification of 2.5D Simulation (Hxz= Hzx)
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Dip angle: 60 degrees
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with 9 Fourier mode
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Description of the Tri-Axial Tool

Operating frequency: 20 kHz

105 ohm-m
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Verification of 2.5D Simulation (Hxx)

Relative errors of tri-axial induction solutions
with respect to the solution with 9 Fourier modes
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Verification of 3D Simulation (Hxx)

θ = 60 degrees

Relative errors of tri-axial Induction solutions
with respect to the solution for the vertical well
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Model for Numerical Experiments

Five layers: 100, 0.05, 10000, 1
and 20 ohm-m from top to bottom

Borehole: 0.1 m in radius
100 ohm-m in resistivity

Invasion in the third and fourth layers

θ = 0, 30 and 60 degrees

Anisotropy in the second and 
fourth layers
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Convergence History of Hxx in Vertical Well
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Convergence History of Hxx in Deviated Well

θ = 60 degrees

Converged solutions
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Deviated Wells (0, 30 & 60 degrees)
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Deviated Wells (0, 30 & 60 degrees)
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Hzz in Deviated Wells with Invasion (Im.)

Shallow invasion
with R = 0.1 m
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regardless of the dip angle
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θ = 60, 30 & 0 degrees

-10 -8 -6 -4 -2 0
x 10-6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hzz at 20 kHz

Re(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

-10 -8 -6 -4 -2 0
x 10-6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hzz at 20 kHz

Re(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

Hzz in Deviated Wells with Anisotropy (Re.)

vertical

-10 -8 -6 -4 -2 0
x 10-6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hzz at 20 kHz

Re(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

60 degrees

Effects of anisotropy increase
with increasing dip angle

30 degrees



39

8th Annual Formation Evaluation Consortium Meeting, 2008

-1.6 -1.4 -1.2 -1 -0.8
x 10-5

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hzz at 20 kHz

Im(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

-1.6 -1.4 -1.2 -1 -0.8
x 10-5

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hzz at 20 kHz

Im(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

-1.6 -1.4 -1.2 -1 -0.8
x 10-5

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hzz at 20 kHz

Im(Hzz) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

Hzz in Deviated Wells with Anisotropy (Im.)

vertical 30 degrees 60 degrees

Effects of anisotropy increase
with increasing dip angle



40

8th Annual Formation Evaluation Consortium Meeting, 2008

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hxx at 20 kHz

Re(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hxx at 20 kHz

Re(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hxx at 20 kHz

Re(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

Hxx in Deviated Wells with Anisotropy (Re.)

vertical 30 degrees 60 degrees

Effects of anisotropy decrease
with increasing dip angle



41

8th Annual Formation Evaluation Consortium Meeting, 2008

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hxx at 20 kHz

Im(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hxx at 20 kHz

Im(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hxx at 20 kHz

Im(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

Hxx in Deviated Wells with Anisotropy (Im.)

vertical 30 degrees 60 degrees

Effects of anisotropy decrease
with increasing dip angle



42

8th Annual Formation Evaluation Consortium Meeting, 2008

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hyy at 20 kHz

Re(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hyy at 20 kHz

Re(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

-0.1 -0.09 -0.08 -0.07 -0.06

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hyy at 20 kHz

Re(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

Hyy in Deviated Wells with Anisotropy (Re.)

vertical 30 degrees 60 degrees

Effects of anisotropy decrease
with increasing dip angle



43

8th Annual Formation Evaluation Consortium Meeting, 2008

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hyy at 20 kHz

Im(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

Isotropy
TI anisotropy

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hyy at 20 kHz

Im(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m
10

 o
hm

-m

Isotropy
TI anisotropy

-0.01 0 0.01 0.02

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hyy at 20 kHz

Im(Hyy) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

0.
5 

oh
m

-m

10
 o

hm
-m

Isotropy
TI anisotropy

Hyy in Deviated Wells with Anisotropy (Im.)

vertical 30 degrees 60 degrees

Effects of anisotropy decrease
with increasing dip angle



44

8th Annual Formation Evaluation Consortium Meeting, 2008

-0.1 -0.05 0

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Real part of Hxx at 20 kHz and 2 MHz

Re(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

20 kHz
 2 MHz

-0.02 0 0.02 0.04 0.06 0.08

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

Imaginary part of Hxx at 20 kHz and 2 MHz

Im(Hxx) field (A/m)

D
ep

th
 (m

)

 

 

100 ohm-m

0.05 ohm-m

10000 ohm-m

1 ohm-m

20 ohm-m

20 kHz
 2 MHz

Hxx at 20 KHz and 2 MHz in Vertical Well

Larger variations at 2 MHz
than at 20 kHz



45

8th Annual Formation Evaluation Consortium Meeting, 2008

Conclusions

• We successfully simulated 3D tri-axial induction 
measurements by combining the use of a Fourier series 
expansion in a non-orthogonal system of coordinates with a 
2D high-order, self-adaptive hp finite-element method.

• Dip angle effects on tri-axial tools are larger than on more 
traditional induction logging instruments.

• Anisotropy effects on Hxx and Hyy decrease with  increasing 
dip angle, while those on Hzz increase.

• Hxx at 20 kHz exhibits smaller variations than at 2 MHz.
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