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57) ABSTRACT

A method of simulating behaviour of a molecular system with
m degrees of freedom over time comprising a partial momen-
tum refreshment step and a molecular dynamics step, wherein
the partial momentum refreshment step comprises: given a
starting position q and a starting momentum p of the molecu-
lar system, partially refreshing the momentum to define
refreshed momentum p' evaluating the shadow Hamiltonian
Hadat position q and momentum p'; and accepting or reject-
ing the refreshed momentum p' according to a Metropolis-
type function and if p' is accepted using p' as the resulting
momentum p and starting position q as the resulting position
qorifitis rejected, using p as the resulting momentum p and
starting position q as the resulting position; and wherein the
molecular dynamics step comprises: given a starting position
q and starting momentum p of the molecular system, running
a molecular dynamics simulation over a fixed number of
iterations and obtaining new position q' and new momentum
p'; evaluating the shadow Hamiltonian Hasat position q' and
momentum p' after the molecular dynamics simulation; and
accepting or rejecting the new system configuration produced
by the molecular dynamics simulation according to a
Metropolis-type function and, if the new system configura-
tion is accepted, using q' as the resulting position q and p' as
the resulting momentum p or, if it is rejected, using the origi-
nal starting position q as the resulting position q and negating
the original starting momentum p to give the resulting
momentum p; wherein either the partial momentum refresh-
ment or the molecular dynamics step is the first step of the
method, and the resulting position and resulting momentum
of the first step provides the starting position q and starting
momentum p for the next step.
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METHOD, APPARATUS AND COMPUTER
PROGRAM FOR MOLECULAR SIMULATION

FIELD OF THE INVENTION

[0001] The present invention relates to methods for
molecular simulation. Such methods have practical applica-
tions in many fields of material science, chemistry, biochem-
istry and other disciplines. For example, molecular simula-
tion can be used to show positions of toxins within a
membrane or anticipate properties ofa bio-molecular system.
In fact, molecular modelling methods are now routinely used
to investigate the structure, dynamics and thermodynamics of
inorganic, biological and polymeric systems. The result of
molecular modelling can be used to modify such systems to
improve their performance without lengthy trials in the field.
[0002] 1. Prior Art

[0003] There are two basic approaches to simulation: the
deterministic (regular) approach used, for example in
molecular dynamics and the stochastic (random) approach
used, for example, in Monte Carlo methods, which explore an
energy surface by randomly stepping around the configura-
tion space-; Kinetic properties are usually best considered by
a deterministic approach, whereas thermodynamic properties
can be considered using either the deterministic or stochastic
approach. Both methods have certain drawbacks. The Monte
Carlo method is sometimes unsuited to complex trials and the
step size decreases with system size. Molecular dynamics is
subjectto problems with temperature and pressure control for
NVT and NPT ensembles, moreover the force computations
required are expensive, some special techniques are needed to
constrain some degrees of freedom and consecutive configu-
rations are very similar.

[0004] Some recently developed simulation methods use a
combination of both approaches. One rigorous method for
performing constant temperature simulations is provided by
the hybrid Monte Carlo (HMC) method [1, 2]. The HMC
method combines constant energy molecular dynamics simu-
lations with a Metropolis acceptance criterion and a momen-
tum resampling step. It is crucial that the constant energy
molecular dynamics simulations are performed with a vol-
ume preserving and time-reversible method. The generalized
hybrid Monte Carlo (GHMC) method [14, 15] is a develop-
ment of the HMC method. While the HMC method com-
pletely resamples the momentum after each Monte Carlo
step, the generalized hybrid Monte Carlo (GHMC) method
can be implemented with a partial momentum refreshment
step. This property seems desirable for keeping some of the
dynamic information throughout the sampling process simi-
lar to stochastic Langevin and Brownian dynamics simula-
tions. It is, however, ultimate to the success of the GHMC
method that the rejection rate in the molecular dynamics part
is kept at a minimum. Otherwise an undesirable Zitterbewe-
gung in the Monte Carlo samples is observed. While both
simulations have the advantage of providing a rigorous sam-
pling technique, practical experience shows, however, that
the acceptance rate in the molecular dynamics part of HMC
and GHMC decreases with the size of the molecular system.
In particular, HMC simulations become rather inefficient for
large biomolecular simulations. Possible rescues include
reduction of step-size or increase of accuracy of the molecular
simulations by using a higher-order method. Both approaches
increase however the computational cost significantly. A dif-
ferent approach has been considered by Hampton and Izagu-
irre [3], who suggest to make use of the modified equations
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analysis available for symplectic time-stepping methods such
as the Stormer-Verlet method. The fundamental result of
[4-6] is that any symplectic integrator (see [7, 8] for a general
discussion of symplectic methods) possesses a modified (or
shadow) Hamiltonian Ha:, which is preserved along the
numerical trajectories up to terms « exp(-c/At), where c>0is
a constant and At is the step-size. The shadow hybrid Monte
Carlo (SHMC) method [3] samples from a properly defined
modified energy and is able to achieve very high acceptance
rates in the molecular dynamics part of HMC. Efficient algo-
rithms for computing modified energies can be found in [9]
and [10]. However, SHMC uses an empirical tuning factor,
which is specific to each system and not easy to determine.
Moreover, the momentum resampling step becomes more
complex under the SHMC method. In fact, the necessary
balance between increased acceptance in the molecular
dynamics update and reduced acceptance in the momentum
updates limits the efficiency gains of SHMC over HMC [11].
More recently, the S2HMC method has been introduced in
[12], which overcomes the efficiency limitation of SHMC at
the level of fourth-order modified energies. An extension of
S2HMC to higher-order modified energies is currently not
available.

[0005] In a related paper [13], Akhmatskaya and Reich
proposed to apply the idea of modified energies to an HMC
method with partial momentum updates. The targeted
shadow hybrid Monte Carlo (TSHMC) method achieves high
acceptance rates in both the molecular dynamics as well as in
the momentum refreshment steps. However, it is not detived
in generalized co-ordinates and the parameter used in the
momentum refreshment step cannot recover the whole range
of special cases in a rigorous manner.

[0006] Itisdesirable to provide a method and apparatus for
simulation which overcome or at least mitigate some of the
disadvantages of the prior art.

[0007] The invention is defined in the independent claims,
to which reference should now be made. Advantageous
embodiments are set out in the sub claims.

[0008] According to one preferred embodiment of an
aspect of the invention there is provided a method of simu-
lating behaviour of a molecular system with m degrees of
freedom over time comprising a partial momentum refresh-
ment step and a molecular dynamics step, wherein the partial
momentum refreshment step comprises: given a starting posi-
tion q and a starting momentum p of the molecular system,
partially refreshing the momentum to define refreshed
momentum p' using a noise vector u, where:

[ 74 } _ (cos(qﬁ) sin(@) ]{ u]
[p') \sin(@) —cosig) N p

where p', p: refreshed and current momentum, 0=¢=w/2, u',
u: new and current noise vectors, u=p~"2 M(q)"2g, E,~N(0,
1),i=1,..., mN(0, 1) denoting the normal distribution with
zero mean and unit variance, M:mass matrix, p=1/K;T
where T is temperature; evaluating the shadow Hamiltonian
Hadat position q and momentum p'; and accepting or reject-
ing the refreshed momentum p' according to a Metropolis-
type function and if p' is accepted using p' as the resulting
momentum p and starting position q as the resulting position
qorifitis rejected, using p as the resulting momentum p and
starting position q as the resulting position; and wherein the



US 2009/0076780 Al

molecular dynamics step comprises: given a starting position
q and starting momentum p of the molecular system, running
a molecular dynamics simulation over a fixed number of
iterations and obtaining new position q' and new momentum
p'; evaluating the shadow Hamiltonian Hasat position q' and
momentum p' after the molecular dynamics simulation; and
accepting or rejecting the new system configuration produced
by the molecular dynamics simulation according to a
Metropolis-type function and, if the new system configura-
tion is accepted, using ' as the resulting position q and p' as
the resulting momentum p or, if it is rejected, using the origi-
nal starting position q as the resulting position g and negating
the original starting momentum p to give the resulting
momentum p; wherein either the partial momentum refresh-
ment or the molecular dynamics step is the first step of the
method, and the resulting position and resulting momentum
of the first step provides the starting position q and starting
momentum p for the next step.

[0009] Recently developed techniques have moved away
from the generalized coordinates and rigorous sampling in
GHMC and its exponential performance degradation with
increased system size and time step. Instead, SHMC and
TSHMC have adopted the hybrid Monte Carlo principle
using a different calculation method and thereby achieved
some success in overcoming the disadvantages of HMC and
GHMC. Surprisingly, however, the present inventors have
found that it is possible to build on the rigorous GHMC
principles whilst overcoming the difficulties associated with
larger system sizes.

[0010] We call the new method of invention embodiments
generalized shadow hybrid Monte Carlo (GSHMC). The link
to GHMC has allowed us to develop a more efficient momen-
tum refreshment step for GSHMC. This partial momentum
update keeps some of the dynamic information throughout
the sampling process similar to stochastic Langevin and
Brownian dynamics simulations. Furthermore, we develop
the GSHMC method for molecular systems in generalized
coordinates and for the constant pressure formulation of
Andersen [16] in particular. A key factor is the derivation of
an appropriate symplectic and time-reversible time-stepping
method and the formulation of modified energies. As for
GHMC methods, a high acceptance rate in the molecular
dynamics part of GSHMC is- necessary to avoid an undesir-
able Zitterbewegung due to momentum reversal after a
rejected molecular dynamics update. Under the GSHMC
method we can achieve this by using modified energies of
high enough order.

[0011] Oneparticular preferred aspect is the introduction of
amultiple partial momentum refreshment step, which repeats
the entire partial momentum refreshment step a selected num-
ber of times consecutively, to provide a final resulting
momentum. The multiple step effectively chooses the best
option from the selected number of partial momentum steps.
This simple modification to the method allows improvement
of the acceptance rate in the subsequent metropolis function,
(which is an adaptation of the classical metropolis function)
and at relatively low cost in terms of processing power and/or
time.

[0012] Equally, it might give faster convergence to start the
method with the partial momentum refreshment step rather
than the molecular dynamics iterations. The entire method
may be repeated a selected number of times or until a pre-
ferred result in terms of system energy or stability is achieved.
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[0013] Because of its formulation, GSHMC can be used for
sampling without preserving dynamic information or for sta-
tistically rigorous stochastic Langevin molecular dynamics.
[0014] The result of the simulation can be further improved
by using a change of variable for the momentum p. The
modified value is a function of position and momentum over
time which increases the acceptance rate of the partial
momentum refreshment step.

[0015] Advantageously the method in the molecular
dynamics step can use the generalised or standard Stormer-
Verlet method. This facilitates widespread use of the GSHMC
method.

[0016] Since the method uses shadow Hamiltonians, refer-
ence system energy calculations which are asymptotic expan-
sions of the true Hamiltonian in powers of step size At, some
re-weighting is needed for high accuracy. The shadow Hamil-
tonian is a more sensitive indicator than the true Hamiltoman
of drift in the energy caused by instability, in that it can
eliminate some of the noise in true Hamiltonian values. Nev-
ertheless for accurate results, re-weighting of the calculated
properties of the system is needed at the end of the method.
[0017] GSHMC is applicable to various ensembles and has
been explicitly derived for NVT ensembles and NPT
ensembles. This makes it particularly suitable for biomolecu-
lar simulation and/or material sciences simulation.

[0018] The method is preferably carried out by a computer,
the specification and arrangement of such a computer being
well known to a person skilled in the art of molecular simu-
lation.

[0019] There is also a more generalized application for the
simulation described in detail for molecular simulation in the
following. GSHMC can be used to solve statistical inference
problems in the same way that the HMC method has already
been applied. In such methods, the function defined and
linked to Hamiltonian energy is V, a user defined cost function
and the associated dynamics in q and p is of conservative
Newtonian form. Here, q is a position, parameter or configu-
ration of the system, p is the momentum and Mis from mass
matrix.

[0020] The detailed description is organized as follows. We
first summarize the GHMC method. We then show how to
derive a symplectic and time-reversible time-stepping
method for constant energy molecular dynamics in general-
ized coordinates. This is followed by the introduction of the
GSHMC method, the derivation of a fourth-order modified
energy, and the discussion of improved momentum refresh-
ment steps. We provide implementation details for GSHMC
simulations under an NVT and NPT ensemble. We demon-
strate that the constant pressure GSHMC method can be
thought of as a rigorous implementation (in the sense of
time-stepping artefacts) of the Langevin piston method of
Feller et al. [17]. We finally provide numerical results from
simulations for argon and a lysozyme protein (2LZM) in
water solvent and demonstrate the superiority and sampling
efficiency of GSHMC over the prior art simulation methods.
[0021] TI. The Generalized Hybrid Monte Carlo Method
[0022] We consider a molecular system with 770degrees of
freedom described by generalized coordinates qe B™, poten-
tial energy function V(q) and symmetric (possibly non-con-
stant) mass matrix M(q)e R™*™. The term q can be seen as a
collection of atomic positions in the molecular system and
TMirepresents the degrees of freedom. The corresponding
equations of motion can be derived from the Lagrangian
functional
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The associated Euler-Lagrange equations are given by

d oL 0L d . I_ . \ 3
= [M(q,)q]+VqV(q)—EVq{q-[M(q)q]}=0- ®

di9g dq di

To switch to the Hamiltonian formulation, we first introduce
the momentum conjugate to q (which can be seen as a col-
lection of atomic momenta in the molecular system);

-5 -

&

P M(g)g.

The resulting Hamiltonian (energy) is

ar Lo . )
Hig, p)= E-q—ﬁ= Eq-[qu)qH Vig) = zp-[M(q) pl+Vig)

with canonical equations of motion

g=+V,Hlg, p) = Mg p, (©)

. ; 1 - o M
p=-V,Hig, p)=-:V,ip- Mg~ pl} - V4 V(g).

We now recall that a Markov process will converge to some
distribution of configurations if it is constructed out of
updates each of which has the desired distribution as a fixed
point, and which taken together are ergodic. The generalized
hybrid Monte Carlo (GHMC) algorithm for sampling from
the canonical ensemble with density function

p(g. p)* exp(-p Heg, p), ®
p=1/KzT, is defined as the concatenation of a molecular
dynamics Monte Carlo (MDMC) and a partial momentum

refreshment Monte Carlo (PMMC) step [14, 15]. We now
describe both steps in more detail.

[0023] A. Molecular Dynamics Monte Carlo (MDMC)
[0024] This step in turn consists of three parts:
[0025] (1) Molecular dynamics (MD): an approximate

integration of Hamilton’s equations of motion (6)-(7)
with a time-reversible and volume-preserving method
W,, over L steps and step-size At. We will derive an
appropriate numerical time-stepping method in section
11

[0026] The resulting time-reversible and volume-pre-
serving map from the initial to the final state is denoted
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by U.: (g, p)—(q, p"), ==LAt. Recall that a map U, is
called time-reversible if U =U__~* and volume-preserv-
ing if det

[0027] (i) A momentum flip F: (g, p)—(q, -p).
[0028] (iii)) Monte Carlo (MC): a Metropolis accept/re-
ject rest

) {T- Urlg, p) with probability min(l, exp(-BSH))  (9)
lg,p)= )

(g, p) otherwise

with
orr=H g p)-Hig, - RUsq, p)-Hg, p) (10)

and Hdefined by (5)

[0029] Molecular dynamics Monte Carlo (MDMC) satis-
fies detailed balance since (F-U_)*=id and U_ is volume
conserving.

[0030] B. Partial Momentum Refreshment Monte Carlo
(PMMC)

[0031] We first apply an extra momentum flip Fsothat the
trajectory is reversed upon an MDMC rejection (instead of
upon an acceptance). The momenta p are now mixed with a
normal (Gaussian) i.i.d. distributed noise vector ue R™ and
the complete partial momentum refreshment step is given by

[ s J _ (cos(qb) —sin(@) ‘l ?_[ u] (1D
p') sing) cos(@) ) "\ p

where

u=p " Mig) P8 =8y )T ENIO 1051,
~,m, (12)

and 0=¢=m/2. Here N(0, 1) denotes the normal distribution
with zero mean and unit variance.

[0032] Ifpand uareboth distributed according to the same
normal (Gaussian) distribution, then so are p' and u'. This
special property of Gaussian random variables under an
orthogonal transformation (11) makes it possible to conduct
the partial momentum refreshment step without a Metropolis
accept/reject test. See [15] for details.

[0033] C. Special Cases of GHMC

[0034] Several well-known algorithms are special cases of
GHMC:

[0035] The standard hybrid Monte Carlo (HMC) algo-
rithm of Duane, Kennedy, Pendleton and Roweth [1] is
the special case where ¢=m/2 The momentum flips may
be ignored in this case since p'=uin (11) and the previous
value of p is entirely discarded. According to theoretical
results in [15], this choice is optimal for sampling pur-
poses and long MD trajectories. However, one has to
keep in mind that the theoretical setting of [15] is
unlikely to apply for biomolecular simulations and that
a different choice of ¢ could be more appropriate for
such simulations.
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[0036] The choice ¢=0 corresponds to constant energy
molecular dynamics under the assumption that the
propagator U_ conserves energy exactly.

[0037] The Langevin Monte Carlo algorithm of Horow-
itz [14] corresponds to L=1; i.e., a single MD time-step
with T=At, and ¢ arbitrary. The single step (L=1) may be
replaced by a small number of MD steps and or T=At.
Langevin Monte Carlo recovers stochastic Langevin
molecular dynamics [18]

g=M"gp, as

1 .
p==3Vlp-IM @ P -V, Vig - yp+ oW

provided ¢=2yt<1. Here, y>0 is a constant, W(t) is an
m-dimensional Wiener process, and a is determined by the
standard fluctuation-dissipation relation [18]. Indeed, we find
that (11) without the momentum flip Freduces to

1=+ (2m) a4

for ¢=2yt<X1 and one may view the GHMC algorithm as a
mean to perform stochastic molecular dynamics (instead of
using GHMC as a pure sampling device).

[0038] III. A Symplectic and Time-Reversible Propagator
[0039] To implement the generalized hybrid Monte Carlo
method for Hamiltonian systems of the form (6)-(7), we need
to find a time-reversible and volume-preserving approxima-
tion to the exact solution flow map. The essential idea is to
replace exact time derivatives  in the Lagrangian density (2)
by (forward and backward) finite difference approximations

§ '_qml_qn Vn_qp_qn—l (15
6d = Ar 0= A

and to start from a discrete approximation
Lalig = ) La® 4" 074" A a6

to the Lagrangian functional (1) with

1{87¢" M5 g+ an
L (64", 6 q", )=—{ . }—V ).
ST DZE s g |7

Following the discrete variational principle (see, e.g., [8]), we
find the associated discrete equations of motion from dL, /
9q"=0 and obtain the generalized leapfrog scheme

1 18
0=07 {3 Mg+ Mig g+ ”

L (8 IM@e T+
v, V(g - .

-v
47 5 ¢ IM @5 ¢

This scheme is time-reversible since replacing g™ by q"~*
and At by —At leaves the scheme unchanged.
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[0040] We now convert this scheme into an equivalent (in
terms of q-propagation) symplectic one-step method by not-
ing that

DL 67 6 gar= ) £ with (19
1 (67 q" - [Migh+ Mig=hls! ¢ - 20
L=< Ar.
2 [Vig)+ V(g™

. L +1/2,
The discrete approximation Ly "is now used as a generat-
ing function (see, e.g., [8]) to yield a symplectic (and hence
volume-preserving) time stepping method

Va1 (g P = (@ Pt via 2D

pn+1 — +an+l cgm 22)
1

= S Mg+ M @ )érg +

A
V464" Mg 01 - Vi) and

pr ==V La” 23)
1
= =M@+ MG )8 " -

A
SVl MW - V@)

Given (q", p”), the map ¥, is implemented numerically by
first solving (23) for ¢"*'. The new momentum p™*' is then
given explicitly by (22). We finally note that the generating
function (20) was first proposed by MacKay in [19] for deriv-
ing symplectic methods for systems with general Lagrangian
density [.(g, 9).

[0041] The generalized Stormer-Verlet method is second-

order in time and the average energy fluctuation (§H)satisfies
(H)-Omart, 249

where m is the number of degrees of freedom and § His given
by (10)[3, 20]. Following the analysis of [ 14, 20], the average
Metropolis acceptance rate for the MDMC step is given by

| — (25
P = erfc(z\/ BEH) ) )

and the acceptance rate deteriorates with increasing system
size m.

[0042] IV. Generalized Shadow Hybrid Monte Carlo
(GSHMC) Method

[0043] The basic idea of the GSHMC method is to imple-
ment the GHMC method with respect to an appropriately
modified reference energy Has. This reference energy is cho-
sen such that the acceptance rate that we have derived as (25)
for shadow Hamiltonian systems in the MDMC part of the
GHMC algorithm is increased. This goal can indeed be
achieved by making use of backward error analysis and the
implied existence of modified energies, which are preserved
to high accuracy by the time-stepping method [3, 13]. The
price we pay for this increased acceptance rate is that (i) the
PMMC step becomes more complex and that (ii) computed
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samples need to be re-weighted after the simulation to
become exactly consistent with the desired canonical distri-
bution function (8).

[0044] We provide the details of the GSHMC method in
several steps. First we describe the MDMC step when imple-
mented with respect to a reference

energy Har = H+O(A¥), pz4. This step is a minor but
important modification of the GHMC method. We then

explicitly derive a fourth-order modified energy H[.i]tfor the
generalized Stormer-Verlet method of Section I1I. We finally
discuss the necessary modifications to the momentum
refreshment Monte Carlo step, which are vital to the success
of the GSHMC method.
[0045] A. Modified MDMC Step
[0046] The MDMC step of Section I A remains as before
with only (10) replaced by

sri=Hauuy(q, p)-Hatg,p). @s)

In the remaining part of the subsection we derive a fourth-

order reference energy Hai = 'H!;],for the generalized
Stormer-Verlet method of Section III. A generalization to
sixth-order and higher can be found in the Appendix.

[0047] Given the numerical trajectory {q"},__,“**, we con-
struct to t,,, ne{0, L}, an interpolation polynomial Q(t)e R™of
order p=2k, k=2, such that

o=, i=n-k, ..., n. .., n+k (0]

We make use of standard Taylor expansion, i.e.

3 28)

o A, Ar
g = Q) = 8Q() + —-00) £ =00+,

in the discrete Lagrangian density (17) to obtain

1, A, AP . Ar, AP (29)
Lo = Z[Q+ TIQ+ %Q(S)]_[M(Q)[QJr §Q+ ?IQ(S)HJr

I, A, AP . Ar,. AP

— — (3) . =2 B3| _

4[9 S0+ 0 ][M(Q)[Q o H

V(Q)+O(Ar)
=C(Q, Q)+ APScH (0D, D, 0, 0) + O(A*) with
(30)

3cM(QY, 0. 0. 0) = 5;{30 [M(@)0] + 42- M (@0}

and with all quantities involving the interpolation polynomial
Q(t) evaluated at t=t,,.

[0048] We note that the truncated expansion

30- M) 6D
& =%Q-[M(Q,)Q]—V(QJ+M{ o (Q)QM}

24| 10 M(Q)0®]

Can be viewed as a new (higher-order) Lagrangian density
with associated (higher-order) Euler-Lagrange equations. We
derive the associated conversed energy according to the for-
mula
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acd o8y . ds (32)
M= — 0+ — 0-—— -0+
a0 a9 diyf
orll o d Ock N ackl -
aQ(S) dr 3Q‘3] de BQC‘) At

[0049] An explicit expression is provided by

1, . Af (33)
i =50 M@ +v@+ 57

, . d a1 n & .
{49- M@Q™1-60- —[M@)0] +40- 5 [M (Q)Q]} +

AP W d .
57130 M@0-40- 2 [M(0]).

[0050] It can be shown that H[;]tis preserved to fourth-order
along trajectories of (23)-(22) and (18), respectively, pro-
vided k=2 and p=4 in (27). This procedure can be generalized

and we obtain modified energies H[zf]for any k=2. See the

Appendix for the case k=3. These modified energies 'H[Azf],
with an appropriate order p=2k=4, will be used in the
GSHMC method as the reference energy function Hac.
[0051] Using the modified energies, the estimate (24) gets
replaced by

(EH}-Otmarts, (34)

with 8 Hnow being given by (26) and Ha. =Har. Hence an
increase in system size m can be counterbalanced by an
increase in the order of the modified energy to keep the
product of m and At* roughly constant. In other words, modi-
fied energies offer a rather inexpensive way to increase the
acceptance rate (25) of the MDMC step.

[0052] B. Modified PMMC Step

[0053] To give a comparison with other recently developed
simulation technologies, the original THSMC method has
been based on a simple momentum proposal step of the form
with an arbitrary parameter, which can be disadvantageous
because it 1s not known what kind of dynamics is can be
recovered.

p'=p+Yu. (35)

[0054] Here Y>0 is the free parameter and u is defined by
(12). Smaller values of Y lead to smaller perturbations in the
momenta. The new set of momenta p' is accepted/rejected
according to an appropriate Metropolis criterion [13].
[0055] Ithasbeen found thatincreased values ofa lead to an
increased rejection rate. In this section, a modified momen-
tum update is proposed for GSHMC to reduce such an unde-
sirable increase in the rejection rate. This modification is
indeed found to significantly improves the efficiency of
GSHMC as a sampling tool.

[0056] The idea of the modification is to combine the
GHMC momentum update (11) with the fact thatin GSHMC
one samples with respect to a modified energy function Ha:.
This idea can be realized by implementing the PMMC step of
Section [IB as a Markov chain Monte Carlo step with respect
to the reference energy Ha:. Specifically, we define u as in
(12) and propose a new set of momenta p' and auxiliary
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variables u' by (11). The set of momenta p' and the vector u'
are accepted according to the Metropolis test

@ ) [Rig)w, p)']T with probability P(g, p, u, p', &) (36)
u, = »
P (4, p) otherwise
where
Pg. p,u, plo) = 37

| \
exp(—/f[Hm @ P+ 5 Mg u’]l

J

cos(d)  sin(g) (38)
[ sin(¢) —cos(¢) }

min 1, and

I
eXp[—/J’[Hm (4. P+ EMTM(q)‘lu

R(@#)=

It should be noted that the updated variable u' is entirely
discarded after each momentum refreshment step and is
replaced by a new set of random variables (12). The Monte
Carlo step is therefore best understood by interpreting the
update as a ‘classical’ hybrid Monte Carlo method with u
taking the role of ‘momentum’ and p the role of ‘positions’.
Note that the ‘real’ positions q are not changed. Note further-
more that (11) is a linear map from (p, u) to (p',u'). This map
is characterized by the 2x2 matrix (38). Since det(R)=-1 and
R?=1, the proposal step (11) satisfies detailed balance. Hence
(12) and (11) together with (36) sample from a canonical
distribution with density function

1 \ 39
Pexlg pr ) eXp(—ﬁ[Hm (@ p)+ EMTM(q)’lu] ] &

[0057] The angle ¢ in (38) is chosen such that the rejection
rate in the momentum refreshment step is below 10%. A much
higher rejection rate would imply that the system gets ‘ther-
malized’ too infrequently. A fixed rejection rate implies that
larger systems require a smaller value of ¢, which seems
acceptable once we take into account that large NVE simu-
lations behave almost like an NVT ensemble.

[0058] To further decrease the rejection rate one can repeat
the refreshment step before continuing with the molecular
dynamics part of GSHMC. Hence the complete GSHMC
cycle consists then of a molecular dynamics Monte Carlo
step, a momentum flip, a Monte Carlo momentum refresh-
ment step, followed by another Monte Carlo momentum
refreshment step. In other words, GSHMC becomes the con-
catenation of four Markov processes (here we counted the
momentum flip as an independent Markov process) with
identical invariant distribution functions (here the canonical
distribution with respect to a modified Hamiltonian Hag). Of
course, this approach can be further modified by additional
(relatively inexpensive) momentum update steps.

[0059] Inspired by the work of Sweet et al. [12], we finally
mention an additional strategy for increasing the acceptance
rate of the PMMC step. We replace ( 11) by

o _ (cos(gﬁ) sin(@) \( u (40)
[ﬁ’ ] - \sin(¢) —cos(p) ](ﬁ ]’
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where ' is defined through an appropriate change of variables
P=Y(q, p, At). It is assumed that the map 1 is invertible in the
momentum vector p. The new momentum vector p', implic-
itly defined by p'=y(q, p', At), is then accepted with probabil-
ity (37).

[0060] See [12] for all appropriate choice of 1\ in case of a
constant mass matrix. More specifically, given (q, p), we
perform a, single time step forward and backward in time.
The results are denoted by (q*, p*) and (47, p”), respectively.
We define

o Ar . o @1
P= (g p A= p= (% V(g) - Ve Vig )

Note that, contrary to the S2HMC method [12], the modified
PMMC step (40)-(41) can be used together with any choice of
the reference Hamiltonian Hasdn (37) and also for systems
with non-constant mass matrix.

[0061] C. Reweighting

[0062] Given an observable (q. p) and its values Q,, =1, .
.., K, along a sequence of states (q,, p,), i=1. . .., K, computed
by the GSHMC method, we need to reweight , to compute

averages {§1) saccording to the desired canonical distribution
(8). In particular, one needs to apply the formula

K 42)
Z will;
Q==
zwi
i=1
with
wrexp(-p{ Hig, p)- Haig, p). @3)

[0063] Applications

[0064] A. Constant Temperature and Volume (NVT)
GSHMC

[0065] The starting point of any classical molecular simu-
lation is a system of N particles, which interact through both
long and short range forces via Newton’s second law. We
write the equations of motion in the form

F=M1p,: p=-V, V1), (44)

where re R*Y is the vector of atomic positions, p,e R*¥ the

R:}N x3N

associated momentum vector Me is the (constant)

symmetric mass matrix and V: B* — Ris the empirical
potential energy function. The equations of motion (44) are
equivalent to the Euler-Lagrange equations

MV, V(r)=0 (45)
for the Lagrangian density
(46)

|
L= 3 [MF]=V(r).

We find that (46) fits into the general form (2) with constant
mass matrix M(q)FM, Q=r, and m=3N.
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[0066] Because the mass matrix IA is now constant, the
symplectic time-stepping method W, defined by (22)-(23)
becomes equivalent to the standard Stormer-Verlat method
(see,. e.g.,

At 47

st = g = S Ve, @0
P e, @3)
49)

Ar
P = et EVrV("”l),

and the expression for the modified energy Hgl,reduces to

HI 2 0

o %R-[MR] +V(R) +%{2R-[MR‘3’] -R MR},

where R(t) denotes now the interpolating polynomial and
replaces Q(t) in (33).

[0067] The application of the GSHMC method, as
described in Section IV, is now straightforward. Numerical
results will be presented in Section VIL.

[0068] We finally note that the equations of motion (45)
subject to holonomic constraints (such as bond stretching and
bending constraints) can be treated numerically by the
SHAKE extension [22] of the standard Stérmer-Verlet/leap-
frog method. The associated modified energies remain unat-
fected by that extension and the fourth-order modified energy,
in particular, is still provided by the expression (50).

[0069] B. Constant Temperature and Pressure (NPT)
GSHMC
[0070] We first summarize the constant energy and pressure

formulation of Andersen [16]. We then discuss a symplectic
and time-reversible integration method and derive its fourth-
order modified energy. This provides the essential building
block to extend the GSHMC method to molecular simula-
tions in an NPT ensemble.

[0071]

[0072] Given a classical molecular system described by
44), the constant pressure and energy (NPE) formulation of

1. Constant Pressure Molecular Dynamics

Andersen is derived as follows. The coordinate vector re R*Y
in (45) is replaced by a scaled vector de R*Y defined by
d=!3 (51)

where v is the volume of the simulation box. Consider now
the extended Langragian density

Gl o)=L ] vig 0 s B e

Z

[0073] We interpret q as the (dynamic) value of the volume
v and call this additional degree of freedom the ‘piston’
degree of freedom. The constant ct corresponds to the external
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pressure acting on the system and p>0 is the mass of the
‘piston’.

[0074] Upon defining q=(d%, q)’e R™, m=3N+1, we find
that (52) fits into the general form (2) with non-constant mass
matrix

213 ‘.
&M 0 (53)
Mig) = [ }

The associated NPE equations of motion are now easily
derived using (3). See also Andersen’s original publication
[16]. The conserved energy Hcan be derived from the
Lagrangian density (52) according to the standard formula
%), i,

H=d VL 440,L L (54)
- Lang, [Md]+ £ +vigd) +ag
2 2

— g2
=59

B 1
pa M pal+ @pz +V(g"d) +ag

B2 = 2l — v

1
Pre [‘Mﬁlpr] +Vn+ _p2 +aq,
2

where

pa=q"Md, p=yg 63

are the conjugate momenta in the NPE formulation and P, =M
i=p/q*" is the classical momentum vector of the NVE for-

mulation (44).

[0075] 2. A Time-Reversible and Symplectic Implementa-
tion

[0076] We use the previously developed discrete varia-
tional principle to derive a symplectic time-stepping method
and obtain the generalized leapfrog method

i " mo; d] " (56)
o?{i[(q”)z/ﬂtq ) /*]Mé,d /}:_va Vi) dr)
and
wio gt = -
PORE |
(s 6 {61 d" - (M8} d"] + 6, d" [M6,d"} =V, V(g B

The equivalent generalized Stormer-Verlet formulation is
defined as follows. Given (d”, ¢, p,/, p”), we first find d"*"
and g™*' from the equations

Lo e (@ =AY A . (58
pi =3[ + @M —— |+ SV VP Y
and
qn+1 _ qn] At e (dn+l _dn] [ (dn+l —d" ]] (59)
r = - — (g ———|- M
P “( & g’ & Y

&9, Vi e + al.

]
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The values for P! and p™** are explicitly given by

D Y FRPICY S d"”—d"] e TRT RO
pit =5l @ “]M( )5 eV @ )

and
q;1+1 _ qn] At s [dml _ dn] [ (dml 4 ]] (61)

n+l _ - +1 . R |

P "“‘( YA AR a M
Ar

T[V’* V((qnu)lﬁdm) " w]_

This completes one time step.

[0077] The time-reversible and symplectic method (58)-
(61) allows for the implementation of a hybrid Monte Carlo
methods as proposed in [2]) and described in more detail in
[23]. We now derive a fourth-order modified energy for the
GSHMC method.

[0078] Let Q(t) and D(t) denote the interpolation polyno-
mials along numerical trajectories {¢”} and {d"}, respec-

tively. Then the associated fourth-order modified energy,
defined by (33). is given by

AP g AP (62)
HU = ) 2 213 10 D3
H[Ax] =H + ﬂ[zﬂQQG' —pQ } + o {4D-[Q / MD”)} _

. d o d ) AP
6D (0¥ MD|+4D- W[QZBMD]} + 57 3D
d
2830418 —ai. L1023
[0**mb]-4D- 20" D]}
, AP .G .2 e 3 23
=H+ ﬁ{l/xQQ‘ V- uQ” +207°D - [MDP] - 0¥D-
Y- (T, ST, o B
[#D]}+ ﬁ{[gg—m - 57 D-[MD] - 3 20
[MD]}
with Hgiven by (54).
[0079] 3. A Modified PMMC Step
[0080] The one-step formulation (58)-(59) together with

(60)-(61) will be used in the GSHMC method according to
preferred invention embodiments. After each completed NPE
molecular dynamics sub-step, we refresh the momenta P?and
P as described in Section IV.

[0081] Following the Langevin piston method of Feller et
al. [17], one can also apply the following simplified momen-
tum update. We always keep the particle momentum P¢ and
only refresh the “piston” momentum P, i.e., we replace (11)

by

0, (63)

PP ©4)

u'=sin(¢)p+cos(@lu (65)

p=-cos{@)p+sin(@iu, (66)
with

u=p~ 08, 5N, 1), (67)
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The probability (37) is replaced by

Pd. g, pa. pu, ploul) = (68)

1
eXp(—ﬁ[HA,(d, 4 pa P+ ﬂ(#')z}]

minf 1,

‘ 1
eXp[—/J’["iA,(d, 4, pa: p)+ ﬂMZD

where Hads an appropriate modified energy, e.g.,

Hae = Hhwith Hgl,given by (62).

[0082] Given a collision frequency y for the Langevin pis-
tonmethod [17], we choose ¢ and =LAt such that ¢=2yt K1
and the resulting GSHMC method can be viewed as a rigor-
ous implementation of the Langevin piston method in the
sense of section IIC under the assumption of ergodicity of the
induced Markov process. Note that, on the contrary, the Lan-
gevin piston method combined with the Brunger, Brooks,
Karplus (BBK) time-stepping algorithm [24] leads to statis-
tical errors proportional to At*. In particular, one needs to
require that yAt is small.

[0083] VI. Algorithmic Summary of the GSHMC Method
[0084] We summarize the algorithmic implementation of
an embodiment of the GSHMC method for the fourth-order
modified energy (33) as follows:

[0085] A.MDMC Step of GSHMC

[0086] Given an accepted MC sample with generalized
position vector q and momentum vector p, we determine the

associated modified energy 'Hg]t(q, p) by integrating the
equations of motion two steps forward and backward in time
using (22)-(23) in order to construct the required interpola-
tion polynomial Q(t) as defined in section IV A.

[0087] The equations of motion are then solved forward in
time over L time steps using the symplectic and time-revers-
ible method (22)-(23). Denote the result by (q', p").

[0088] An additional two time steps are performed to evalu-

ate the associated modified energy H{;],(q', p") and the pro-
posal step (q', p') 1s accepted with probability
4 f

minit, exp)i-B{ Mt - Mo, ) (69)
[0089] In case of rejection, we continue with (q', p')=(q,
-p).
[0090] B.PMMC Step of GSHMC
[0091] Usinga change of variables as, for example, defined
by (41), we first compute p=y(q, p', At). The momentum

vector p' is now mixed with a noise vector u distributed
according to (12). We formally set q"=

q' and define
[’4/ _(cos(@) —sin(g))( ¢ (10
ﬁ"]‘(sin(@ cos(@) ][F ]

The proposal momentum vector p", implicitly defined by
"= (q", p", At), is accepted with probability

1 7
exp[—ﬁ[ﬂ&i(q". P+ Sl TM (q”)*lu’D o

min| L, : g
eXP(—ﬁ[HKL(q’, p)+ qul M (q’)’lu]]
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where two time steps forward and backwards need to be
performed in order to evaluate Hagq", p"). In case of rejec-
tion, we continue with (q", p")=(q’, p").

[0092] A single GSHMC step is now completed. We store
the accepted MC sample as (q,,;, p;.;)=(q". p") and evaluate
the associated weight factor w,, ; using (43).

[0093] C. Comments

[0094] We summarize here a few general comments on the
GSHMC method according to preferred invention embodi-
ments.

[0095] (1) Note that different angles ¢ can be assigned to
different components of u and p' in (70). This freedom
has been used in section V B 3.

[0096] (ii) Note also that the summary of the GSHMC
method has been formulated such that the number of
necessary momentum flips is minimized. This is in con-
trast to the (entirely equivalent) presentation used so far,
which has been based on the detailed balance require-
ment.

[0097] (iii) The number of additional force evaluations
for GSHMC with p=p over standard HMC amounts to
p-2, where p is the order of the modified energy. For
example, GSHMC with (33) requires two additional
force evaluations per complete Monte Carlo step.

[0098] The change of variables (41) requires additional
force evaluations [12].

[0099] (iv) The time step At and the angle ¢ should be
chosen such that the probability of having both the
MDMC as well as the PMMC step being simultaneously
rejected is less than 1%. This is because we obtain
q;.1=9; and p,,;=—p, in such a case, which leads to the
undesired Zitterbewegung in the MC samples.

[0100] This requires, in general, a decrease of ¢ in (70) as
the system size, d=3N, increases. Furthermore, the dis-
cussion in [16] on a dynamically consistent collision
frequency y for a small volume of liquid surrounded by
a much larger volume suggests that ¢uy2ecl/NV2,
where N is the number of atoms.

[0101] (v) In case the PMMC step is performed with a
change of variables as defined, for example, by (41) to
replace p with a linear constitution of atoms, we refer to
the resulting method as the GS2HMC method (in anal-
ogy to the S2HMC method of [12]).

[0102] In case of p=p, we continue using the acronym
GSHMC.

[0103] VII. Numerical Results

[0104] Preferred embodiments of the present invention will

now be described, purely by way of example, with reference
to the accompanying drawings, in which:

[0105] FIG. 1 shows normal probability plots for volume
and temperature fluctuations from HMC and GSHMC imple-
mentation of Andersen’s constant pressure formulation;
[0106] FIG. 2 shows PMMC acceptance rate vs. MD step-
size At and MD length T for fixed angle ¢=/24;

[0107] FIG. 3 shows PMMC acceptance rate vs. ¢ for fixed
step-size At=2 fs and MD simulation length t=2 ps;

[0108] FIG. 4 shows mean-square displacements of the
protein centre-of-mass vs. ¢;

[0109] FIG. 5 shows VMD [29] ribbon diagram of 2L.ZM
illustrating locations of catalytic residues Glul1, Asp20, and
Thr26;

[0110] FIG. 6 shows autocorrelation function of main chain
torsion angle ® of residue Thr26;
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[0111] FIG. 7 shows autocorrelation function of main chain
torsion angle W of residue Thr26; and

[0112] FIG. 8 shows autocorrelation function of side chain
torsion angle A, of residue Thr26.

[0113] Inthis section, we perform three sets of experiments
forming three demonstrations of embodiments of the inven-
tion. The first set is based on an NVT simulation of argon and
assesses rejection rates for several MC methods in the context
of sampling. The second set of experiments is based on an
NPT simulation of argon. Here we compare the GSHMC
algorithm and the Langevin piston method of Felleret al. [17]
and assess the performance of GSHMC in the context of
stochastic dynamics simulations. We finally implement
GSHMC for a larger biomolecular system, the bacteriophage
T4 lysozyme protein, and compare the sampling efficiency of
GSHMC to constant temperature MD using the Berendsen
thermostat [25].

[0114] A. Argon

[0115] We perform simulations for argon in a periodic box
under an NVT and NPT, respectively, ensemble. We now
present numerical results for both ensembles. We begin with
the NVT simulations.

[0116] 1.NVT Simulations

[0117] We perform NVT simulations at a temperature of
T=120 K using the following two settings:

[0118] (A)N=5°,1=20.1 A,

[0119] (B)N=8°,L=319.6 A.
[0120] We implement the GSHMC method with three val-
ues of the angle ¢p(zt/2, p=n/4 and ¢=r/8) in the PMMC step.
We also implement the GSHMC method with the modified
momentum refreshment step, as defined by (41), with ¢=r/2.
We refer to this implementation as GS2HMC.

[0121] Results are compared to implementations of the
standard HMC method and the newly proposed S2ZHMC
method of [12].

[0122] All Monte Carlo (MC) implementations use
=LAt=2.17 ps and generate a total of K=10* Monte Carlo
samples to compute expectation values according to (42).
Simulations are performed for four different values of At
(v/50~43.4 fs, ©/75=~28.9 s, ©/100=21.7 {5, ©/200=10.9 {5)

TABLE I

Rejection rates for MDMC and PMMC steps, respectively, for
all tested methods under the experimental setting A.

MDMC/PMMC At~ At~ At~ At~
rejections 434 fs 289 fs 21.71s 109 fs

GSHMC method,
(‘) =2

GSHMC method,
(I) =m/d

GSHMC method,
(]) =8

GS2HMC method,
¢= 2

S2HMC method
HMC method

20%/23%  2%/12%  <1%/6%  <1%/2%

22%/17%  2%/8% <1%/4%  <1%/1%

21%/9% 2%/5% <1%/2%  <1%/<1%

19%/<1%  2%/<1%  <1%/<1% <1%/<1%

20%/NA 1%/NA
22%/NA 9%/NA

<1%/NA
6%/NA

<1%/NA
2%/NA




US 2009/0076780 Al

TABLE II

Rejection rates for MDMC and PMMC steps, respectively, for
all tested methods under the experimental setting B.

MDMC/PMMC At= At= At= At~
rejections 43.4fs 289 fs 21.7 fs 10.9 fs
GSHMC method, 33%/37%  3%/19% <1%/10% <1%/3%
¢=n2

GSHMC method, 33%/27%  3%/12% <1%/7% <1%/3%
¢=n/4

GSHMC method, 32%/15%  3%/7% <1%/4% <1%/1%
¢=mn/8

GS2HMC method, 32%/<1% 3%/<1% <1%/<1% <1%/<1%
p=n2

S2HMC method 33%/NA  2%/NA <1%/NA <1%/NA
HMC method 99%/NA  15%/NA  10%/NA 3%/NA
[0123] We state rejection rates for the MDMC step and the

PMMC step (where applicable) in table I for setting A and in
table II for setting B, respectively. We observe an increase in
rejection rates for all methods for increasing system size dand
step-size At. The acceptance rate for the MDMC step is simi-
lar for all GSHMC and S2HMC implementations and is con-
sistently better than the corresponding rate of standard HMC.
[0124] The acceptance rate of PMMC step in GSHMC
improves with smaller values of ¢. The GS2ZHMC method
almost reaches the perfect behaviour of S2HMC and HMC in
terms of momentum resampling. One should note, however,
that the transformation step (41) requires additional force
evaluations.

TABLE 11T
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[0125] We also give expectation values of total energy. E,
diffusion constant,

oo L o (72)
= 0 - roIP,

and pressure, P, as well as their standard deviation range
(corresponding to the 95% confidence interval of normally
distributed data) for the experimental setting A and At=t/
75=28.9 fs in table I11. All methods lead to comparable results
interms oftotal energy, E, implying that all methods correctly
sample from the canonical ensemble. More remarkably, the
diffusion constant, D, increases significantly for smaller val-
ues of ¢ in the PMMC step of GSHMC. This confirms the fact
that HMC methods influence the dynamical properties of a
molecular system. Pressure, P, fluctuates largely for all meth-
ods, which is not unexpected for a small molecular system
such as that of setting A.

[0126] 2. NPT Simulations

[0127] We now simulate N=125 argon atoms at constant
ten;perature T=120 K and constant pressure P=0.65-10" N
m™.

[0128] We implement a standard constant pressure and
temperature HMC algorithm (see, e.g., [23]) and compare the
results to the corresponding GSHMC implementation of sec-
tion VB with ¢p=n/2.

[0129] The simulation parameters are as follows. Both
methods are implemented with a step-size of At=10.9 fs,
samples are taken at in intervals of T=LAt=2.17 ps, i.e.,
L=200, and the total number of samples is K=10*. The mass
of the piston degree of freedom is set equal to u=6, and
¢=0.65-10" Nm™.

Expectation values and their standard deviation range for total energy, E,
diffusion constant, D, and pressure, P, from numerical experiments using setting A and

At~2891s.

energy E [120k, K] diffusion D [A%ps™!]

pressure P [kN/cm?]

GSHMC method, ¢ = n/2 -442.6 £33.6 0.2873 +0.0564
GSHMC method, ¢ =n/4 -442.7 £32.8 0.4782 £ 0.1275
GSHMC method, ¢ =n/8 -442.0 £31.2 0.7742 £ 0.1465
GS2HMC method, ¢ =a/2 -441.0 £33.2 0.2927 £ 0.0205
S2HMC method -441.9 £32.6 0.2877 + 0.0668
HMC method -438.0 £33.8 0.2691 +0.0219

0.5904 £0.7302

0.5881 £0.7204

0.5958 £0.7049

0.6515 £0.7317

0.6630 +0.7266

0.6571 £0.7344

TABLE IV

Mean values and their standard deviation range for pressure, P, temperature,
T, and total energy, E, for GSHMC and HMC implementation of Andersen’s constant

pressure formulation.

pressure [x 10’ Nm™]

temperature [K]

energy [120 kp K]

GSHMC method ¢ = n/2
HMC method

0.6492 + 0.8450
0.6342 + 0.8404

120+ 17
120217

-330 £ 49
-331+£49
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TABLE V

Mean values and their standard deviation range for pressure,
P, temperature, T, and total energy, E, for GSHMC and Langevin
piston BBK simulation of the NPT ensemble.

pressure temperature energy
[x10"Nm™] K] [120kz K]
GSHMC method 0.6500 = 0.8425 118 £14 -340 £11
Langevin piston, 0.6477 + 0.8580 123 £ 18 =314 £45
BBK algorithm
[0130] We compare pressure, P, temperature, T, and total

energy, E. Mean values and their standard deviation range can
be found in table IV. We also verify that the volume and
temperature fluctuations are Gaussian distributed. We display
the results for the GSHMC and HMC method in FIG. 1. Both
methods lead to very similar distributions. The temperature
distribution is almost ideal while the volume fluctuations
display some non-Gaussian behaviour in the tails. The effect
can be attributed to the finite size of the sample.

[0131] We also implement the constant pressure and tem-
perature GSHMC algorithm using the partial momentum
update (63)-(66) and compare the results to the Langevin
piston method of Feller et al [17]. The Langevin piston equa-
tions of motion are implemented using the Brunger, Brooks,
Karplus (BBK) algorithm [24].

[0132] The simulation parameters are now as follows. Both
methods are implemented with a step-size of At=21.7 fs,
samples are taken at in intervals of ©=LAt=0.217 ps, ie.,
[=10, and the total number of samples is K=2x10*. The mass
of the piston degree of freedom is set equal to p=6, a=0.
65:10’ N m>, and the collision frequency in the Langevin
piston s set equal 10 y=0.1152 ps~*. The angle, ¢, in (65)-(66)
is determined according to ¢=2Aty=0.2236. Both methods
are started from an equilibrated configuration.

[0133] We compare pressure, P, temperature, T, and total
energy, E. Mean values and their standard deviation range can
be found in table V. Note that both methods couple to a
constant temperature ‘heat bath’ only through the piston
degree of freedom. The results from both methods are in
agreement (to within the expected errors given the simulation
length, the system size, and the weak coupling to the ‘heat
bath’) with the desired NPT ensemble.

[0134] B. Lysozyme Protein in Water

[0135] A larger molecular system, the bacteriophage T4
lysozyme protein (pdb entry 2L.ZM), is simulated to compare
the sampling efficiency of GSHMC and constant temperature
MD. A united atoms representation is used to eliminate all
hydrogen atoms from the protein, and water is modelled using
the SPC model [26]. The total number of atoms is 23207,
which are placed in a thombic dodecahedron simulation box.
Both simulation approaches, MD and GSHMC, use GRO-
MACS 3.2.1 [27] to perform the molecular dynamics steps.
Specifically, a switch cut-off scheme is used for Lennard-
Jones interactions. Coulomb interactions are treated using a
particle-mesh Ewald summation (PME) method [28,29]. The
full direct and reciprocal space parts are calculated in each
step and a lattice spacing of 0.1 nm is applied. All bonds are
constrained using the SHAKE method [22] with a relative
tolerance of 107'% allowing for a step-size of At=2 fs.

[0136] The system is initially equilibrated for 1 ns using
standard MD techniques. The MD and GSHMC simulations
are then performed for another 1 ns at a temperature of 300 K.
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In the traditional MD approach the temperature is coupled to
a heat bath of 300 K using the Berendsen thermostat with a
coupling time constant of 0.1 ps [25].

[0137] To find the optimal settings for GSHMC production
stage we investigate the effect of different simulation param-
eters on the sampling efficiency of GSHMC. A set of com-
paratively short simulations are performed using three differ-
ent step-sizes At (1, 2 and 4 fs), two different MD simulation
lengths © (2 and 4 ps), five values of the angle ¢(/24, /12,
0.3 0.5, n/2)and two values of the order p (4, 6) for the

modified Hamiltonian H®. The results of this study are
shown in FIGS. 2 and 3.

[0138] Sincewe found that acceptance rate for MDMC step
was consistently high (98-100%) for all tested parameters, we
present here the results for the acceptance rate in the PMMC
step only. FIG. 2 demonstrates the effect of step-size and MD
simulation length on the momentum acceptance rates
whereas FIG. 3 shows how the momentum acceptance rate
depends on the angle ¢. The momentum acceptance rate was
found to be essentially independent of the order (here 4th and
6th order) of the modified energies.

[0139] It canbe concluded from FIGS. 2 and 3 that smaller
step-sizes, larger MD simulation lengths, and smaller values
of ¢ induce a higher acceptance rate in the PMMC step. A
nearly optimal choice of the parameter ¢ and the step-size At
1s crucial for the performance of GSHMC. Choosing ¢=n/2 is
found to be not efficient for this large system.

[0140] We have to stress that the PMMC step is cheap
compared with the MDMC step. To decrease the rejectionrate
ofthe PMMC step one can repeat the step a desired number of
times. This strategy is efficiently implemented in parallel in
our code.

[0141] In addition, we consider the evolution of the mean-
square displacement of the centre-of-mass (c.0.m.) of the
protein for GSHMC simulations using two different values of
¢=n/24 and ¢=n/12. We find that the c.0.m. mobility of the
protein in GSHMC simulation increases with an increasing of
¢. This is shown in FIG. 4.

[0142] To perform a comparison between GSHMC and
MD simulations we run the GSHMC simulation with a step-
size of At=2 fs, the number of MD steps in MDMC equal to
L=1000, and ¢=n/12 on ten processors ofa PC cluster. We use
a sixth-order modified energy.

[0143] To compare the sampling efficiency of different
sampling methods with respect to an observable Q, we evalu-
ate the integrated autocorrelation function values of a time
series {Q,},_, %, where K is the number of samples [15]. The
integrated autocorrelation function value is defined by

K 13)

where C(t,), L=1 . . ., K'<K is the standard autocorrelation
function for the time series {£2,},_,* with the normalization
C(ty)=C(0)=1. The integrated autocorrelation function value
provides a good measure for the efficiency of a sampling
method since, on average, 1+2A, correlated measurements
Q, are needed to reduce the variance by the same amount as
a single truly independent measurement of Q.

[0144] We present the autocorrelation functions for the
dihedrals of Asp20, Glull and Thr26 residues in FIG. 5.
These dihedrals are known to be critical catalytic residues in
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lysozyme. In fact, it has been reported that the catalytic activ-
ity of most lysozymes is largely due to three amino acids. In
the case of the bacteriophage T4 lysozyme. catalysis takes
place due to the concerted action of Glu11, Asp20, and Thr26
with the substrate [31-35].

[0145] The autocorrelation functions C(t,) for the main
chain torsion angles @, ¥, and a side chain torsion angle 1, of
the Thr26 residue are shown in FIGS. 6, 7, and 8, respectively,
for t,-100 ps.

TABLE VI

Comparison between GSHMC and MD in efficiency for sampling of
main chain torsion angles of important catalytic residues.
AGMPIALTSHMCE i the ratio of integrated autocorrelation

function values obtained from MD and GSHMC simulations.

AHDIAOSHMC Asp20 Thr26

] 38 140

¥ 34 45
TABLE VII

Comparison between GSHMC and MD in efficiency for sampling of
side chain torsion angles of important catalytic residues.
AGMPIAGTHMC is a ratjo of integrated autocorrelation

function values obtained from MD and GSHMC simulations.

AGMPIALTSHMC Glul1 Asp20 Thr26
o 5.54 1.0 2.69
$2 7.1 1.56 NA
v 3.76 NA NA
[0146] Computed integrated autocorrelation function val-

ues, Ay, are based on autocorrelation functions C(t,) and
T, =500 ps. Ratios of integrated autocorrelations function
values for the main chain torsion angles ®, ¥ and side chain
torsion angles A, A, ., forresidues Asp20, Glul1 and Thr26,
as observed during GSHMC and MD simulations, are pre-
sented in table VI and table VII, respectively. As shown in
tables VI and VII, GSHMC requires less (up to 14 times!)
iterations (MD steps) than standard MD to achieve one sta-
tistically independent sample for all torsion angles of cata-
Iytic residues Asp20, Glul1 and Thr26.

[0147]

[0148] We have presented a more efficient implementation
of the GHMC method, which is based on the use of modified
energies. The resulting GSHMC/GS2HMC methods allow
the user to either perform pure sampling or stochastic dynam-
ics simulations.

[0149] In the case of sampling, the GS2HMC method has
the advantage of keeping the acceptance rate in the PMMC
step high without having to make ¢ smaller as the system size
increases.

[0150] However, the transformation step (41) requires
additional force field evaluations. Repeated application of the
PMMC step with a reduced value of ¢ and p=p, i.e. no trans-
formation, provides a viable alternative.

[0151] The GS2HMC method behaves similarly to the
recently proposed S2HMC method. An advantage of
GS2HMC over S2HMC is that it can be combined with
higher-order (higher than fourth order) modified energies and
that it can be used with partial momentum refreshment. To
take full advantage of higher-order modified energies, the

VIII. Summary
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force field evaluations have to be performed accurately
enough and sufficiently smooth cut-off functions need to be
implemented.

[0152] For small values of ¢=,2yAL, i.e. stochastic dynam-
ics simulations, the GSHMC method without the transforma-
tion (41) is to be recommended since the acceptance rate in
the PMMC step of GSHMC is high for small values of ¢ and
since GSHMC is cheaper to implement than GS2HMC.
[0153] Numerical experiments have demonstrated that
GSHMC/GS2HMC are suitable for NVT as well as NPT
simulations. In particular, we have shown that GSHMC/
GS2HMC outperform both classical MD as well as standard
HMC in terms of sampling. Furthermore, GSHMC provides
a statistically rigorous simulation tool for stochastic dynam-
ics in an NVT or NPT ensemble.

[0154] IX.Implementation as a Computer Program
[0155] Inany ofthe above aspects, the various features may
be implemented in hardware, or as software modules running
on one or more processors. Features of one aspect may be
applied to any of the other aspects.

[0156] The invention also provides a computer program or
acomputer program product for carrying out any of the meth-
ods described herein, and a computer readable medium hav-
ing stored thereon a program for carrying out any of the
methods described herein. A computer program embodying
the invention may be stored on a computer-readable medium,
or it could, for example, be in the form of a signal such as a
downloadable data signal provided from an Internet website,
or it could be in any other form.

[0157] Appendix 1

[0158] We derive the sixth-order modified energy. Follow-
ing the approach of section IV A we first derive a modified
Lagrangian density to sixth order:

T pf 2\ (74)
Lot = l[Z: LQ“) . /\/[(Q) ZAIJ Qli)] .
4 i il
=1 i=1
= A Al ]
E[Z CUA ol {mig) 27( v Q“’I -
4 it i
L =) )
V(Q), =L +AP0CH + AtSLH + O(AS)
where Lis given by (2), 5L by (30), and 5 LC by
L[ 50 M©@O%1+150: as)
oLl = —— .
20{ (M@0 + 200 - [M(Q)0™]

Hence, we define the sixth-order modified Lagrangian den-
sity by
LOL £, ppe L1, ppt5 L1 (76)

and higher-order modified Lagrangian can be found by
including higher-order terms in the expansion (74). The sixth-
order modified energy is now given by

7

5 il .
] [ ok .
" = E { E (_1"1[W 6QA(;)}'Q(‘ J)J—[}Xl:

R E

with the generalization to higher-order again being straight-
forward.



US 2009/0076780 Al

Appendix 2

[0159] The GSHMC method can be used to solve statistical
inference problems in the same manner as the hybrid Monte
Carlo (HMC) method can be applied to such problems (see,
e.g., [36, 37]). In particular, in a Bayesian framework, all
inference problems can be reduced to the evaluation of certain
expectation values with respect to the posterior distribution of
unknown variables. This target posterior distribution can
always be written out explicitly, up to a normalization con-
stant, as

(g Igmolgi=exp(-¥(q)) €8]

where f is the probabilistic model that connects data y with
unknown parameters q, 7, is the prior distribution in q (which
is often assumed to be Gaussian), and

Vig)=-log flylg)-log my(q)- @

[0160] In order to use the GSHMC to sample the posterior
distribution (1), we introduce an auxiliary ‘momentum’ vari-
able p, a (constant) symmetric mass matrix M and the ‘guide
Hamiltonian’

1 3
H = zp[M*lp} +V(g) ¥

with associated Newtonian equations of motion
§=M"'p, 5=-V, @) @

[0161] These equations can be integrated in time by a sym-
plectic and time-reversible method such as Stérmer-Verlet.
The resulting propagator U_ with appropriate reference
Hamiltonian Ha:, is then to be used in the MDMC part of the
GSHMC method. The PMMC part and the re-weighting pro-
cedure for expectation values remain unchanged.
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1. A method of simulating behaviour of a molecular system
with m degrees of freedom over time comprising a partial
momentum refreshment step and a molecular dynamics step,
wherein the partial momentum refreshment step comprises:

given a starting position q and a starting momentum p of the

molecular system, partially refreshing the momentum to
define refreshed momentum p' using a noise vector u,
where:

[ o J _ (cos(‘zﬁ) sin(¢) ][ u]
Lp) \singg) —cosi) A p
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where
p', p: refreshed and current momentum,

0=p=as2,

u', u: new and current noise vectors,

w=p2 M(q)'%g, E~N(O, 1), i=1, . . ., mN(0, 1) denoting
the normal distribution with zero mean and unit variance,
M mass matrix,

B=1/K;T where T is temperature;

evaluating the shadow Hamiltonian Hat position q and

momentum p'; and
accepting or rejecting the refreshed momentum p' accord-
ing to a Metropolis-type function and if p' is accepted
using p' as the resulting momentum p and starting posi-
tion q as the resulting position g or if it is rejected, using
p as the resulting momentum p and starting position q as
the resulting position;
and wherein the molecular dynamics step comprises:
given a starting position q and starting momentum p of the
molecular system, running a molecular dynamics simu-
lation over a fixed number of iterations and obtaining
new position q' and new momentum p';

evaluating the shadow Hamiltonian Hat position ' and
momentum p' after the molecular dynamics simulation;
and
accepting or rejecting the new system configuration pro-
duced by the molecular dynamics simulation according
to a Metropolis-type function and, if the new system
configuration is accepted, using q' as the resulting posi-
tion q and p' as the resulting momentum p or, if it is
rejected, using the original starting position q as the
resulting position q and negating the original starting
momentum p to give the resulting momentum p;

wherein either the partial momentum refreshment or the
molecular dynamics step is the first step of the method,
and the resulting position and resulting momentum of
the first step provides the starting position q and starting
momentum p for the next step.

2. A method according to claim 1, wherein the entire
method is repeated at least once.

3. A method according to claim 1, wherein the first step in
the method is the partial momentum refreshment step.

4. A method according to claim 1, wherein the partial
momentum refreshment step constitutes a multiple partial
momentum refreshment step, in which the entire partial
moment refreshment step is repeated a selected number of
times consecutively, to provide a final resulting momentum.

5. A method according to claim 1, wherein ¢=x/2 and the
method is suitable for sampling without preserving dynamic
information.

6. A method according to claim 1, wherein ¢=2yt<<1,
where

y: collision frequency constant;

T=LAt, where

L: chosen number of molecular dynamics iterations;
At: time step;
and the method recovers statistically rigorous stochastic Lan-
gevin dynamics.

7. A method according to claim 6, wherein L is chosen to be
equal to 1 to implement the Langevin Monte Carlo algorithm.

8. A method according to claim 1, wherein a value of
parameter ¢ in the momentum refreshment step is decided
separately for each molecule in the system.
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9. A method according to claim 1, wherein p, a modified
value for momentum p, is used in the partial momentum
refreshment step to give:

[u’] (cos(¢) —sin(¢) l(u
(7)) \sin(g) cosp) A7)

10. A method according to claim 9, wherein the modified
value for momentum p is a function of momentum and posi-
tion over time, preferably given by

D=Y(q, p, AY); and more preferably given by

Ar
P =4l p. A= p- 52V, V(g") =V, Vig )

where1}' is a map which is invertible in the momentum vector
p and AV is the derivative of the potential energy V with
respect to q.

11. A method according to claim 1, wherein the refreshed
momentum p' is accepted with probability

1
eXP[—/J’[Hm @ P+ 50)'M ':q)*lu’]]

Plg, p, u, p's ') = mir] 1, T
eXP(—ﬁ[HM (g, p)+ ZMTM(q)’luD

where

p', p: refreshed and current momentum;

u, v new and current vectors of auxiliary variables

w2 M)
u=p M@, E~NQ, 1), i1
matrix;

, ™. M mass

B=1/K;T; and Hads a shadow Hamiltonian.

12. A method according to claim 1, wherein each molecu-
lar dynamics iteration includes describing the forces on the
atoms of the molecules of the molecular system using a cho-
sen force field, integrating Newton’s equation to predict the
positions and velocities at a new time and recalculation of the
forces.

13. A method according to claim 1, wherein Newton’s
equation of motion in the molecular dynamics step is solved
using a time reversible and symplectic method, preferably the
generalized Stormer-Verlet method, more preferably the
standard Stormer-Verlet method.

14. A method according to claim 1, wherein the new posi-
tion q' and new momentum p' in molecular dynamics simu-
lation are accepted with probability

P(f’ p. ¢, p)=min(l, exp(-p{ Has(g! p)- Hasg,
D)y

15. A method according to claim 1, wherein calculated
properties are re-weighted at the end of the entire method.
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16. A method according to claim 15, wherein the
re-weighting is performed using

K
Z W‘-Q‘
i=0
K

2w

=0

)=

weexp(-p (g, p))- Hauig, pp))

where values His a true Hamiltonian and Hads a shadow
Hamiltonian €,1=0, . . . K, along a sequence of states (g,
p;)s =1 ..., K of any property of the system computed
by the method.

17. A method according to claim 1, wherein shadow
Hamiltonians Hof an appropriate order p=2k=4, k=1, 2, ...
of approximation are used.

18. A method according to claim 1, wherein the simulation
conditions provided correspond to an NVT (canonical)
ensemble.

19. A method according to claim 18, wherein the simula-
tion in the molecular dynamics step corresponds to an NVE
(microcanonical) ensemble.

20. A method according to claim 1, wherein the simulation
conditions provided correspond to an NPT (isobaric-isother-
mal) ensemble.

21. A method according to claim 20, wherein the simula-
tion in the molecular dynamics step corresponds to an NPE
(isobaric) ensemble.

22. A method according to claim 1, further comprising a
step of initially inputting simulation conditions and/or simu-
lation parameters.

23. A method according to claim 22, wherein the simula-
tion conditions include at least one of volume, mass, tempera-
ture, pressure, number of molecules and total energy.

24. A method according to claim 22, wherein the simula-
tion parameters include at least one of the number of repeti-
tions of partial momentum step and molecular dynamics step,
the order of shadow Hamiltonians used, the time step in
molecular dynamics, the number of molecular dynamics
iterations, the starting position and momentum for the first
step in the method, the force field parameters and the constant
¢ for partial momentum refreshment.

25. A method according to claim 1, wherein the partial
momentum refreshment step is applied to the “piston”
momentum only, where “piston” is associated with the fluc-
tuating volume of the molecular system at constant pressure.

26. A method according to claim 1, wherein the method is
carried out using generalised co-ordinates.

27. A method according to claim 1, carried out by a com-
puter.

28. A method according to claim 1, including the step of
displaying the results on a screen or printout.

29. A method of molecular simulation of a system over
time comprising:

modelling the system using an atomistic model;

carrying out the method of simulating behaviour of a

molecular system according to any of the preceding
claims; and

analysing the results obtained from the simulation and

relating them to macroscopic level properties.
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30. A method according to claim 29, further comprising
using the relationship of the results to the macroscopic prop-
erties to assess and optionally modify the system at the mac-
roscopic level, before repeating the method on the modified
system.

31. An apparatus which simulates behaviour of a molecular
system with m degrees of freedom over time, comprising
partial momentum refreshment means for carrying out a par-
tial momentum refreshment step and molecular dynamics
means for carrying out a molecular dynamics step, wherein
the partial momentum refreshment means comprises:

partial refreshment means for, given a starting position q

and a starting momentum p of the molecular system,
partially refreshing the momentum to define refreshed
momentum p' using a noise vector u, where:

[14/ (cos(‘zﬁ) sin(@) ]{u]
\p’J‘ sin(9) ~cosig) \ p

where
p', p: refreshed and current momentum,

0=¢=n/2,

u', u: new and current noise vectors,

u=p~"2 M(q)*?E, E~N(, 1), i=1, . . ., mN(0, 1) denoting
the normal distribution with zero mean end unit variance,
M: mass matrix,

B=1/KgT where T is temperature;

evaluation means for evaluating the shadow Hamiltonian
Haat position q and momentum p'; and

decision means for accepting or rejecting the refreshed
momentum p' according to a Metropolis-type function
and if p' is accepted using p' as the resulting momentum
P and starting position q as the resulting position q or if
it is rejected, using p as the resulting momentum p and
starting position q as the resulting position;

and wherein the molecular dynamics means comprises:

molecular dynamics simulation means for given a starting
position q and starting momentum p of the molecular
system, running a molecular dynamics simulation over a
fixed number of iterations and obtaining new position q'
and new momentum p';

evaluation means for evaluating the shadow Hamiltonian
Haat position q' and momentum p' after the molecular
dynamics simulation; and

decision means for accepting or rejecting the new system
configuration produced by the molecular dynamics
simulation according to a Metropolis-type function and,
if the new system configuration is accepted, using q' as
the resulting position q and p' as the resulting momen-
tum p or, if it is rejected, using the original starting
position q as the resulting position q and negating the
original starting momentum p to give the resulting
momentum p:

wherein the apparatus is configured such that either the
partial momentum refreshment or the molecular dynam-
ics step is the first step of the method, and the resulting
position and resulting momentum of the first step pro-
vides the starting position q and starting momentum p
for the next step.
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32. A method for sampling positions q according to a given
probability distribution function of the general form p(q)x
exp(-pV(q),

whereV is a user defined cost function and f is a parameter,

using canonical momentum p, mass matrix M, and

Hamiltonian energy H=1/2p"M lp+V(q), where the
mass matrix depends on the positions q and the associ-
ated dynamics in (q, p) is of conservative, Newtonian
form; the method comprising:

generating a sequence of states (q,, p;) with respect to the
canonical distribution function for a shadow Hamilto-
nian in two separate Markov chain Monte Carlo steps, a
partial momentum refreshment Monte Carlo step and a
conservative dynamics refreshment Monte Carlo step,
wherein the partial momentum refreshment Monte
Carlo step comprises:

given a starting position q and a starting momentump of the
system, partially refreshing the momentum to define
refreshed momentum p' using a noise vector where:

u cos(¢) —sin(¢)\/ u
[p’ ] - ( sin(@)  cos(@) ][ p]
P, p: refreshed and current momentum;

0=p=m/2,

u', u: new and current noise vectors,
u=p12 M(Q)V2E, ,~N(0, 1),i=1. ..., mN(0, 1) denot-
ing the normal distribution with zero mean and unit
variance;
m: number of degrees of freedom of the system;
evaluating the shadow Hamiltonian Hasat position q and
refreshed momentum p' according to a Metropolis-type
fanction and if p' is accepted using p' as the resulting
momentum and starting position q as the resulting posi-
tion or if it is rejected, using p as the resulting momen-
tum p and starting position q as the resulting position;
and wherein the conservative dynamics step comprises:
given a starting position q and starting momentum p per-
forming a conservative dynamics simulation with a
time-reversible and simplectic method over a fixed num-
ber of iterations and obtaining new position q' and new
momentum p';
evaluating the shadow Hamiltonian Hacat q' and momen-
tum p' after the conservative dynamics simulation; and
accepting or rejecting the new system configuration pro-
duced by the conservative dynamics simulation accord-
ing to a Metropolis-type function and, if the new system
configuration is accepted, using q' as the resulting posi-
tion q and p' as the resulting momentum p or, if it is
rejected, using the original starting position q as the
resulting position q and negating the original starting
momentum p to give the resulting momentum p;
wherein either the partial momentum refreshment or the
conservative dynamics step is the first step of the
method, and the resulting position and resulting momen-
tum of the first step provides the starting position q and
starting momentum p for the next step.

33. A method according to claim 32, further comprising
approximating expectation values according to the desired
probability distribution function p(q) or the Boltzmann dis-
tribution for the Hamiltonian Hrespectively, as re-weighted
averages along the generated sequence of states (q;, p,)-
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34. A method according to claim 32, comprising the fea-
tures of claim 2.

35. A computer program which, when executed on a pro-
cessor, carries out the method defined in claim 1.

36. A computer program which, when executed on a pro-
cessor, carries out the method defined in claim 29.

37. A computer program which, when executed on a pro-
cessor, carries out the method defined in claim 32.

38. An apparatus which simulates behaviour of amolecular
system with m degrees of freedom over time, comprising a
partial momentum refreshment unit for carrying out a partial
momentum refreshment step and a molecular dynamics unit
for carrying out a molecular dynamics step, wherein the par-
tial momentum refreshment unit comprises:

a partial refreshment unit for, given a starting position q and

a starting momentum p of the molecular system, par-
tially refreshing the momentum to define refreshed
momentum p' using a noise vector u, where:

[ 7 J _ (cos(qﬁ) sin(@) ]{ u]
(7' ) \sin(@) —cosid) N p

where
p', p: refreshed and current momentum,

0=¢=n/2,

u', u: new and current noise vectors,

u=p~ "> M(q)*?E, E~N(, 1), i=1, . . ., mN(0, 1) denoting
the normal distribution with zero mean end unit variance,
M mass matrix,

p=1/K,T where T is temperature;

an evaluation unit for evaluating the shadow Hamiltonian
Hasat position q and momentum p'; and

a decision unit for accepting or rejecting the refreshed
momentum p' according to a Metropolis-type function
and if p' is accepted using p' as the resulting momentum
P and starting position q as the resulting position q or if
it is rejected, using p as the resulting momentum p and
starting position q as the resulting position;

and wherein the molecular dynamics unit comprises:

a molecular dynamics simulation unit for given a starting
position q and starting momentum p of the molecular
system, running a molecular dynamics simulation over a
fixed number of iterations and obtaining new position q'
and new momentum p';

an evaluation unit for evaluating the shadow Hamiltonian
Hasat position q' and momentum p' after the molecular
dynamics simulation; and

a decision unit for accepting or rejecting the new system
configuration produced by the molecular dynamics
simulation according to a Metropolis-type function and,
if the new system configuration is accepted, using q' as
the resulting position q and p' as the resulting momen-
tum p or, if it is rejected, using the original starting
position q as the resulting position q and negating the
original starting momentum p to give the resulting
momentum p:

wherein the apparatus is configured such that either the
partial momentum refreshment or the molecular dynam-
ics step is the first step of the method, and the resulting
position and resulting momentum of the first step pro-
vides the starting position q and starting momentum p
for the next step.
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