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METHOD, APPARATUS AND COMPUTER PROGRAM FOR
MOLECULAR SIMULATION

FIELD OF THE INVENTION

The present invention relates to methods for molecular simulation. Such methods have practical
applications in many fields of material science, chemistry, biochemistry and other disciplines.
For example, molecular simulation can be used to show positions of toxins within a membrane
or anticipate properties of a bio-molecular system. In fact, molecular modelling methods are
now routinely used to investigate the structure, dynamics and thermodynamics of inorganic,
biological and polymeric systems. The result of molecular modelling can be used to modify

such systems to improve their performance without lengthy trials in the ficld.

I. ___PRIOR ART

There are two basic approaches to simulation: the deterministic (regular) approach used, for
example in molecular dynamics and the stochastic (random) approach used, for example, in
Monte Carlo methods, which explore an energy surface by randomly stepping around the
configuration space. Kinetic properties are usually best considered by a deterministic approach,
whereas thermodynamic properties can be considered using either the deterministic or stochastic
approach. Both methods have certain drawbacks. The Monte Carlo method is sometimes
unsuited to complex trials and the step size decreases with system size. Molecular dynamics is
subject to problems with temperature and pressure control for NVT and NPT ensembles,
moreover the force computations required are expensive, some special techniques are needed to

constrain some degrees of freedom and consecutive configurations are very similar.

Some recently developed simulation methods use a combination of both approaches. One
rigorous method for performing constant temperature simulations is provided by the hybrid
Monte Carlo (HMC) method [1, 2]. The HMC method combines constant energy molecular
dynamics simulations with a Metropolis acceptance criterion and a momentum resampling step.
It is crucial that the constant energy molecular dynamics simulations are performed with a
volume preserving and time-reversible method. The generalized hybrid Monte Carlo (GHMC)
method [14, 15] is a development of the HMC method. While the HMC method completely
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resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo
(GHMC) method can be implemented with a partial momentum refreshment step. This property
seems desirable for keeping some of the dynamic information throughout the sampling process
similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to
the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at
a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is cbserved.
While both simulations have the advantage of providing a rigorous sampling technique,
practical experience shows, however, that the acceptance rate in the molecular dynamics part of
HMC and GHMC decreases with the size of the molecular system. In particular, HMC
simulations become rather inefficient for large biomolecular simulations. Possible rescues
include reduction of step-size or increase of accuracy of the molecular simulations by using a
higher-order method. Both approaches increase however the computational cost significantly. A
different approach has been considered by Hampton and Izaguirre [3], who suggest to make use
of the modified equations analysis available for symplectic time-stepping methods such as the
Stormer-Verlet method. The fundamental result of [4-6] is that any symplectic integrator (sec
[7. 8] for a general discussion of symplectic methods) possesses a modified (or shadow)

Hamiltonian HAt, which is preserved along the numerical trajectorics up to terms

o exp(~¢/At) where ¢ > 0 is a constant and At is the step-size. The shadow hybrid Monte
Carlo (SHMC) method [3] samples from a properly defined modified energy and is able to
achieve very high acceptance rates in the molecular dynamics part of HMC. Efficient
algorithms for computing modified energies can be found in [9] and [10]. However, SHMC uses
an empirical tuning factor, which is specific to each system and not easy to determine.
Moreover, the momentum resampling step becomes more complex under the SHMC method. In
fact, the necessary balance between increased acceptance in the molecular dynamics update and
reduced acceptance in the momentum updates limits the efficiency gains of SHMC over HMC
{11]. More recently, the S2HMC method has been introduced in [12], which overcomes the
efficiency limitation of SHMC at the level of fourth-order modified energies. An extension of
S2HMC to higher-order modified energies is currently not available.

In a related paper [13], Akhmatskaya and Reich proposed to apply the idea of modified energies
to an HMC method with partial momentum updates. The targeted shadow hybrid Monte Carlo
(TSHMC) method achieves high acceptance rates in both the molecular dynamics as well as in

the momentum refreshment steps. However, it is not derived in generalized co-ordinates and the
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parameter used in the momentum refreshment step cannot recover the whole range of special

cases in a rigorous manner.

It is desirable to provide a method and apparatus for simulation which overcome or at least

mitigate some of the disadvantages of the prior art.

The invention is defined in the independent claims, to which reference should now be made.

Advantageous embodiments are set out in the sub claims.

According to one preferred embodiment of an aspect of the invention there is provided a method
of simulating behaviour of a molecular system with m degrees of freedom over time comprising
a partial momentum refreshment step and a molecular dynamics step, wherein the partial
momentum refreshment step comprises: given a starting position q and a starting momentum p
of the molecular system, partially refreshing the momentum to define refreshed momentum p’'

using a noise vector u, where:

u’ cos(¢) sin(¢) u

P’ sin(¢) —cos(¢) /] \ P
where p’, p : refreshed and current momentum, 0<¢<m/2 y, u: new and current noise
vectors, U = 5—1/2M(q)1/2£’ & ~N(0,1),i=1,...,m, N(0,1) denoting the normal

distribution with zero mean and unit variance, M: mass matrix, 8= 1/ KBT where T s
temperature; evaluating the shadow Hamiltonian Hae at position q and momentum p’; and
accepting or rejecting the refreshed momentum p’ according to a Metropolis-type function and
if p' is accepted using p' as the resulting momentum p and starting position q as the resulting
position q or if it is rejected, using p as the resulting momentum p and starting position q as the
resulting position; and wherein the molecular dynamics step comprises: given a starting position
q and starting momentum p of the molecular system, running a molecular dynamics simulation
over a fixed number of iterations and obtaining new position q' and new momentum p’;
evaluating the shadow Hamiltonian Hae at position q’ and momentum p’ after the molecular
dynamics simulation; and accepting or rejecting the new system configuration produced by the
molecular dynamics simulation according to a Metropolis-type function and, if the new system
configuration is accepted, using q' as the resulting position q and p' as the resulting momentum

p or, if it is rejected, using the original starting position q as the resulting position q and
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negating the original starting momentum p to give the resulting momentum p; wherein either
the partial momentum refreshment or the molecular dynamics step is the first step of the
method, and the resulting position and resulting momentum of the first step provides the starting

position q and starting momentum p for the next step.

Recently developed techniques have moved away from the generalized coordinates and rigorous
sampling in GHMC and its exponential performance degradation with increased system size and
time step. Instead, SHMC and TSHMC have adopted the hybrid Monte Carlo principle using a
different calculation method and thereby achieved some success in overcoming the
disadvantages of HMC and GHMC. Surprisingly, however, the present inventors have found
that it is possible to build on the rigorous GHMC principles whilst overcoming the difficulties

associated with larger system sizes.

We call the new method of invention embodiments generalized shadow hybrid Monte Carlo
(GSHMC). The link to GHMC has allowed us to develop a more efficient momentum
refreshment step for GSHMC. This partial momentum update keeps some of the dynamic
information throughout the sampling process similar to stochastic Langevin and Brownian
dynamics simulations. Furthermore, we develop the GSHMC method for molecular systems in
generalized coordinates and for the constant pressure formulation of Andersen [16] in particular.
A key factor is the derivation of an appropriate symplectic and time-reversible time-stepping
method and the formulation of modified energies. As for GHMC methods, a high acceptance
rate in the molecular dynamics part of GSHMC is necessary to avoid an undesirable
Zitterbewegung due to momentum reversal after a rejected molecular dynamics update. Under
the GSHMC method we can achieve this by using modified energies of high enough order.

One particular preferred aspect is the introduction of a multiple partial momentum refreshment
step, which repeats the entire partial momentum refreshment step a selected number of times
consecutively, to provide a final resulting momentum. The multiple step effectively chooses the
best option from the selected number of partial momentum steps. This simple modification to
the method allows improvement of the acceptance rate in the subsequent metropolis function,
(which is an adaptation of the classical metropolis function) and at relatively low cost in terms

of processing power and/or time.

P108857GB00 GSHMC ALGORITHM



Equally, it might give faster convergence to start the method with the partial momentum
refreshment step rather than the molecular dynamics iterations. The entire method may be
repeated a selected number of times or until a preferred result in terms of system energy or

stability is achieved.

Because of its formulation, GSHMC can be used for sampling without preserving dynamic

information or for statistically rigorous stochastic Langevin molecular dynamics.

The result of the simulation can be further improved by using a change of variable for the
momentum p. The modified value is a function of position and momentum over time which

increases the acceptance rate of the partial momentum refreshment step.

Advantageously the method in the molecular dynamics step can use the generalised or standard
Stérmer-Verlet method. This facilitates widespread use of the GSHMC method.

Since the method uses shadow Hamiltonians, reference system energy calculations which are

asymptotic expansions of the true Hamiltonian in powers of step size At, some re-weighting is
needed for high accuracy. The shadow Hamiltonian is a more sensitive indicator than the true
Hamiltonian of drift in the energy caused by instability, in that it can eliminate some of the
noise in true Hamiltonian values. Nevertheless for accurate results, re-weighting of the

calculated propertics of the system is needed at the end of the method.

GSHMC is applicable to various ensembles and has been explicitly derived for NVT ensembles
and NPT ensembles. This makes it particularly suitable for biomolecular simulation and/or

material sciences simulation.

The method is preferably carried out by a computer, the specification and arrangement of such a

computer being well known to a person skilled in the art of molecular simulation.

There is also a more generalized application for the simulation described in detail for molecular
simulation in the following. GSHMC can be used to solve statistical inference problems in the
same way that the HMC method has already been applied. In such methods, the function
defined and linked to Hamiltonian energy is V/, a user defined cost function and the associated
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dynamics in q and p is of conservative Newtonian form. Here, q is a position, parameter or

configuration of the system, p is the momentum and M is the mass matrix.

The detailed description is organized as follows. We first summarize the GHMC method. We
then show how to derive a symplectic and time-reversible time-stepping method for constant
energy molecular dynamics in generalized coordinates. This is followed by the introduction of
the GSHMC method, the derivation of a fourth-order modified energy, and the discussion of
improved momentum refreshment steps. We provide implementation details for GSHMC
simulations under an NVT and NPT ensemble. We demonstrate that the constant pressure
GSHMC method can be thought of as a rigorous implementation (in the sense of time-stepping
artefacts) of the Langevin piston method of Feller et al. [17]. We finally provide numerical
results from simulations for argon and a lysozyme protein (2LZM) in water solvent and
demonstrate the superiority and sampling efficiency of GSHMC over the prior art simulation
methods.

II.___THE GENERALIZED HYBRID MONTE CARLO METHOD

We consider a molecular system with 770 degrees of freedom described by generalized
coordinates @ € R™, potential energy function ¥(q) and symmetric (possibly non-constant) mass
matrix M(a) € R™*™ The term q can be seen as a collection of atomic positions in the molecular
system and ™ represents the degrees of freedom. The corresponding equations of motion can be

derived from the Lagrangian functional
4
el = [ £t aene

M
with Lagrangian density
. 1. .
£(4.9) = 59- M(a)g] - V(q). (2)
The associated Euler-Lagrange equations are given by
doL oL d . 1 . .
pry: Tl il [M(a)al+ VoV(a) - 5Va {q- [M(a) 4]} =0. @)

‘T'o switch to the Hamiltonian formulation, we first introduce the momentum conjugate to

q (which can be seen as a collection of atomic momenta in the molecular system);
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We now recall that a Markov process will converge to some distribution of configurations if it is
constructed out of updates each of which has the desired distribution as a fixed point, and which
taken together are ergodic. The generalized hybrid Monte Carlo (GHMC) algorithm for
sampling from the canonical ensemble with density function

p(q, p) o« exp(—FH(q,p)), (8)

B=1/ KBT, is defined as the concatenation of a molecular dynamics Monte Carlo (MDMC)
and a partial momentum refreshment Monte Carlo (PMMC) step [14, 15). We now describe

both steps in more detail.
A. Molecular dynamics Monte Carlo (MDMC)
This step in turn consists of three parts:

(i)  Molecular dynamics (MD): an approximate integration of Hamilton’s equations of

motion (6)-(7) with a time-reversible and volume-preserving method Wat over L

steps and step-size At. We will derive an appropriate numerical time-stepping
method in section IIL
The resulting time-reversible and volume-preserving map from the initial to the final
state is denoted by U, : (q,p} — (q'.p’), 7 = LAt. Recall that a map U, is called
time-reversible if U, = UZ} and volume-preserving if det %(3;-%;2 =1

(ii) A momentum flip F : (q,p) — (4. —p).
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(it} Moute Carlo (NIC) a Metropolis aceept [reject test

()

(o) F - U-(q.p) with probability min(L.exp(— $8H))
q.p)= .
(q. p) otherwise

with
OH = H(U(q.p) = Hiq.p) = H(F - Ui(q. p)) - Hlq. p) (10)
and H defined by (5)
Molecular dynamics Monte Carlo (MDMC) satisfies detailed balance since (¥ U)=id

and U- is volume conserving.
B. Partial momentum refreshmeat Monte Carlo (PMMC)

We first apply an extra momentum flip Fso that the trajectory is reversed upon an
MDMC rejection (instead of upon an acceptance). The momenta p are now mixed with a
normal (Gaussian) i.i.d. distributed noise vector U € IR™ and the complete partial

momentum refreshment step is given by
u _ cos(@) —sin(¢) F u (1)
P’ sin(¢) cos(9) P

u=d""2M(q) %, E=(&.. ..&)T.  E~N(O).i=1. ..m  (12)

where

and 0 < ¢ £ 7/2_ Here N(0, 1) denotes the normal distribution with zero mean and unit

variance.

If p and u are both distributed according to the same normal (Gaussian) distribution, then
so are p' and u'. This special property of Gaussian random variables under an orthogonal
transformation (11) makes it possible to conduct the partial momentum refreshment step
without a Metropolis accept/reject test. See [15] for details.

C. Special Cases of GHMC

Several well-known algorithms are special cases of GHMC:
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. The standard hybrid Monte Carlo (HMC) algorithm of Duane, Kennedy,
Pendleton and Roweth [1] is the special case where ¢ = /2. The momentum
flips may be ignored in this case since p' = u in (11) and the previous value of p
is entirely discarded. According to theoretical results in [15], this choice is
optimal for sampling purposes and long MD trajectories. However, one has to
keep in mind that the theoretical setting of [15] is unlikely to apply for
biomolecular simulations and that a different choice of ¢ could be more

appropriate for such simulations.

. The choice ¢ = 0 corresponds to constant energy molecular dynamics under the

assumption that the propagator U conserves energy exactly.

. The Langevin Monte Carlo algorithm of Horowitz [14] corresponds to L = 1; i.e,,

a single MD time-step with T At, and @ arbitrary. The single step (L = 1) may
be replaced by a small number of MD steps and 7 = LAt Langevin Monte
Carlo recovers stochastic Langevin molecular dynamics [18]
q=M"Yqp. p= -ZI,V.. {p- M(@)'p]} - Vo¥(q) - vp+aW.  (13)
provided ¢ = V237 < 1, Here, ¥ > 0 is a constant, W(¢) is an m-dimensional
Wiener process, and a is determined by the standard fluctuation-dissipation
relation [18]. Indeed, we find that (11) without the momentum flip F reduces to
p'=(1-17)p+(27)%u (14)
for $ = VZIT < 1 and one may view the GHMC algorithm as a mean to
perform stochastic molecular dynamics (instead of using GHMC as a pure

sampling device).
I1.__A SYMPLECTIC AND TIME-REVERSIBLE PROPAGATOR

To implement the generalized hybrid Monte Carlo method for Hamiltonian systems of the form
(6)-(7), we need to find a time-reversible and volume-preserving approximation to the exact
solution flow map. The essential idea is to replace exact time derivatives 9 in the Lagrangian

density (2) by (forward and backward) finite difference approximations

ntt ] " n=1
s*ta® = | —-q -q" = q -q . [
1 q At 3 61 q At (l\l)
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and to start from a discrete approximation
Lal{a™}l =) Lar(67q".67 9" q") At (16)

to the Lagrangian functional (1) with
C,.\c(éfq"ﬁ,'q",q") = {5 qu [M n 6+ n] +0- 1 [M(qn) 5‘-qn]} V(q") (17)

Following the discrete variational principle (see, e.g., [8]), we find the associated discrete

equations of motion from 9La:/3q" = 0 and obtain the generalized leapfrog scheme
1 .y -
0=6: {3 @)+ M@ 57+ Vol )
]' > /] n 7 - n n -t !
= 7Va{dta" - [Mla")stq"] + 67 q" - [M(g™) 67 "]} (18)

This scheme is time-reversible since replacing A" by @"~' and At by -At leaves the scheme

unchanged.

We now convert this scheme into an equivalent (in terms of Q -propagation) symplectic one-step

method by noting that
an.(a Qg ar=y oyt (19)
with
n 1 n n " n v " , n
o +1/2 _ 3 {5}q [M(q ) + M(q +1)] oFqr — [‘: (") + V(q "'l)]}L\t. (20)

The discrete approximation Em is now used as a generating function (see, e.g., [8]) to yield a
symplectic (and hence volume-preserving) time stepping method
ar: (@ p") = (g, p") (21)
via
Pt =+ vql“cn-f-l_/'l
=5 (M(a") + Mla™) 3" + —v., {ara" (M@ éta"] - Vig™)} (22)

and
p" = Vg Ly '*

1 . At
=3 (Mlg”) + M(q"*")) 0} q" - ?V., {6Fq" - (Mlq") 6} q"] - V(gM)}. (23)

nl

Given (a".P"), the map Ya: is implemented numerically by first solving (23) for 9**'. The new

n+}

momentum P""" is then given explicitly by (22). We finally note that the generating function
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(20) was first proposed by MacKay in [19] for deriving symplectic methods for systems with
general Lagrangian density (4. ).

The generalized Stérmer-Verlet method is second-order in time and the average energy
fluctuation (0H) satisfies

(6H) = O(mALY), (24)
where m is the number of degrees of freedom and 0H is given by (10) [3, 20]. Following the
analysis of [14, 20], the average Metropolis acceptance rate for the MDMC step is given by

P, = erfc (é \/H(d"H)) (25)

and the acceptance rate deteriorates with increasing system size m.

IV. GENERALIZED SHADOW HYBRID MONTE CARLO (GSHMC) METHOD

The basic idea of the GSHMC method is to implement the GHMC method with respect to an
appropriately modified reference energy Hat. This reference energy is chosen such that the
acceptance rate that we have derived as (25) for shadow Hamiltonian systems in the MDMC
part of the GHMC algorithm is increased. This goal can indeed be achieved by making use of
backward error analysis and the implied existence of modified energies, which are preserved to
high accuracy by the time-stepping method [3, 13). The price we pay for this increased
acceptance rate is that (i) the PMMC step becomes more complex and that (ii) computed
samples need to be re-weighted after the simulation to become exactly consistent with the

desired canonical distribution function (8).

We provide the details of the GSHMC method in several steps. First we describe the MDMC
step when implemented with respect to a reference energy Har = H+O(A"), p 2 4. This
step is a minor but important modification of the GHMC method. We then explicitly derive a

. {4 . .
fourth-order modified energy Hat for the generalized Stérmer-Verlet method of Section III. We
finally discuss the necessary modifications to the momentum refreshment Monte Carlo step,
which are vital to the success of the GSHMC method.
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A. Modified MDMC step

The MDMC step of Section I1 A remains as before with only (10) replaced by

0H = Ha(li(q. P)) — Haulq. p). (26)
In the remaining part of the subsection we derive a fourth-order reference energy Har = ﬂgk‘ for
the generalized Stormer-Verlet method of Section IIl. A generalization to sixth-order and

higher can be found in the Appendix.

Given the numerical trajectory {€"}:2%, we construct to n. # € {0.L}, an interpolation
polynomial Q() € R™ of order p < 2k, k 2 2, such that
Qi) =4, f=n=-k.... m...,n+k @n
We make use of standard Taylor expansion, i.e.
"t = Q(ta) £ AIQ(1) + S Q(t.,) + 38 Qu(r,) +- (28)
in the discrete Lagrangian density (17) to obtain

-~

T4
+1(a-Far3av). [M(Q) (Q -3a -G—Q‘“')] - V(Q) + O1Ar)
=£(Q.Q) + A5LNQ™.Q.Q. Q) + O(Ar) (29)

with
5CHQ™.Q.Q.Q) = o {3@- [MQ Q] +4Q- [M@QV]}  (30)

and with all quantities involving the mterpolatlon polynomial Q%) evaluated at ¢ = &,

We note that the truncated expansion
) , N N ) )
ol = 1. M@ Q] - v@+ 57 {38 [M@ @] +4Q- [M@Q]} @

Can be viewed as a new (higher-order) Lagrangian density with associated (higher-order) Euler-

Lagrange equations. We derive the associated conversed energy according to the formula

i = oLkl Q285 4 dach O+ ach) doct . & ock

oQ oQ dt aQ Q(3) Qm dtaQ(a) Q de? 3Q(3) Q ‘Cm (32)
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An explicit expression is provided by
il =1Q- [M@ Q] +V(Q
2 - ‘ : . . '.
+ %';- {4Q. [M(Q) QY] - 6Q- dit [M(Q) Q] +1Q.- g_ [M(Q) Q]}

At " . . d .
+ﬁ-{3Q-M(Q)Q—4Q-;E[M(Q)Q}}- (33)

It can be shown that ul,;', is preserved to fourth-order along trajectories of (23)-(22) and (18),
respectively, provided k=2 and p = 4 in (27). This procedure can be generalized and we obtain

2k
modified energies 7"5;:’ for any k> 2. See the Appendix for the case k = 3. These modified

2%
energies Hlml, with an appropriate order p = 2k > 4, will be used in the GSHMC method as the
reference energy function Hat.

Using the modified energies, the estimate (24) gets replaced by

(6H) = O(m AF), (34)
with 6 Hnow being given by (26) and Hat= lefl. Hence an increase in system size m can be
counterbalanced by an increase in the order p=2k of the modified energy to keep the product of
m and At roughly constant. In other words, modified energies offer a rather inexpensive

way to increase the acceptance rate (25) of the MDMC step.
B. Modified PMMC Step

To give a comparison with other recently developed simulation technologies, the original
THSMC method has been based on a simple momentum proposal step of the form with an
arbitrary parameter, which can be disadvantageous because it is not known what kind of

dynamics can be recovered.

p'=p+au. 35)

Here o > 0 is the free parameter and u is defined by (12). Smaller values of O lead to smaller
perturbations in the momenta. The new set of momenta p' is accepted/rejected according 10 an
appropriate Metropolis criterion [13].
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It has been found that increased values of O lead to an increased rejection rate. In this section, a
modified momentum update is proposed for GSHMC to reduce such an undesirable increase in
the rejection rate. This modification is indeed found to significantly improves the efficiency of

GSHMC as a sampling tool.

The idea of the modification is to combine the GHMC momentum update (11) with the fact that
in GSHMC one samples with respect to a modified energy functionHAe. This idea can be
realized by implementing the PMMC step of Section 1IB as a Markov chain Monte Carlo step
with respect to the reference energy Hae Specifically, we define u as in (12) and propose a
new set of momenta p' and auxiliary variables u' by (11). The set of momenta p' and the vector

u' are accepted according to the Metropolis test

(o p') = { [R(é)(u, p)"']T with pltobabiliry P(q.p.u.p’,u') ‘ (36)
(u.p) otherwise

where
o e (=0 [Hadg ) + Hu') 'Miq) " u]) am
P(q.p.u.p’.u’) = min (1. e (=3 [Harla.p) + TuT M(q)-a]) (37)

and
R(#) = [cas(é) .sm(é)' ] . (38)
sin(9) - cos(¢3)

It should be noted that the updated variable u' is entirely discarded after each momentum
refreshment step and is replaced by a new set of random variables (12). The Monte Carlo step is
therefore best understood by interpreting the update as a ’classical’ hybrid Monte Carlo method
with u taking the role of *momentum’ and p the role of ’positions’. Note that the 'real’ positions
q are not changed. Note furthermore that (11) is a linear map from (p, u) to (p',u'). This map is
characterized by the 2 x 2 matrix (38). Since det(R) = -1 and R? = I, the proposal step (11)
satisfies detailed balance. Hence (12) and (11) together with (36) sample from a canonical

distribution with density function

Pext(Q. p. u) o exp (—ﬂ [‘Hm(cn p)+ %uTM(q)"U]) . (39)

The angle ¢ in (38) is chosen such that the rejection ratc in the momentum refreshment step is

below 10%. A much higher rejection rate would imply that the system gets "thermalized’ too
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infrequently. A fixed rejection rate implies that larger systems require a smaller value of @,
which seems acceptable once we take into account that large NVE simulations behave almost
like an NVT ensemble.

To further decrease the rejection rate one can repeat the refreshment step before continuing with
the molecular dynamics part of GSHMC. Hence the complete GSHMC cycle consists then of a
molecular dynamics Monte Carlo step, a momentum flip, a Monte Carlo momentum
refreshment step, followed by another Monte Carlo momentum refreshment step. In other
words, GSHMC becomes the concatenation of four Markov processes (here we counted the
momentum flip as an independent Markov process) with identical invariant distribution
functions (here the canonical distribution with respect to a modified Hamiltonian HA:). of
course, this approach can be further modified by additional (relatively inexpensive) momentum

update steps.

Inspired by the work of Sweet et al. [12], we finally mention an additional strategy for

increasing the acceptance rate of the PMMC step. We replace (11) by

u _ cos(©) sin(g) u ! (40)
P sin(o) — cos(o) P
where p/ is defined through an appropriate change of variables p = 1(q, p, At). It is assumed
that the map ¥ is invertible in the momentum vector p. The new momentum vector p,
implicitly defined by p’' = ¥(q.p’, At), is then accepted with probability (37).

See [12] for an appropriate choice of ) in case of a constant mass matrix. More specifically,
given (q. p), we perform a single time step forward and backward in time. The results are

denoted by (q*.p*) and (q~,p~), respectively. We define

_ At —_—

p=d(q,p.A2) = p - o7 (VoV(a') - VoV (@) (41)
Note that, contrary to the S2HMC method [12], the modified PNIMC step (40)-(41) can be
used together with any choice of the reference Hamiltonian Ha, in (37) and also for systems

with non-constant mass matrix.
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C. Reweighting

Given an observable Q(q, p) and its values ;, i = 1...., I\, along a sequence of states
(Qi.p.).i=1..... K. computed by the GSHMC methocl, we need to reweight {; to compute
averages (1) according to the desired canonical distribution (8). In particular, one needs

to apply the formula

Z’i, uy Qi
) p = 2= (42
< )K Z:;_I 0 )
with

uy = exp(=8{H(q;. p;)) ~ Har(q- Pi)})- (43)
APPLICATIONS

A. Constant temperature and volume (NVT) GSHMC

The stawitmg point of any (classical) wolecular simulation is a system of N particles,
which interact through hoth long and short. range forces via Newton's second law. We write

the equations of motion in the form
F = M'p.. p, = -V, V(r). (44)

where r € R3Y is the vector of atomic positions. p, € R* the associated momentiun vector,
M € RMW*IN g the (constant) synumetric mass matrix and V' R*™ — R is the empirical

potential energy function. "The equations of motion (44) are equivalent to the Euler-Lagrange

equations
ME+V,V(r) =0 (45)
for the Lagrangian density
£ =i (ME] - V(r). (46)

We tind that £46) fits into the general form (2) with constam niass natrix Myg) = .
gqg=r.oaml m=3\,
Because the mass matrix M is now constant. the symplectic time-stepping method ¥a,.

defined by (22)-(23) becomes equivalent to the standard Stérmer-Verlet method (see. e.g..
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(7. )
p;."H/? =p:n - ’_'.A)ﬁv““-(rn): (47)
v e 4 AL p e (48)
p:f"'l =p:_"“) _ 'Alz—rVr‘,(rl'+l)' (49)

and the expression for the modified energy 'H(_:“ reduces to
1. . , At . ] .. .. .
i} = R [MR] + VR + 57 {R-[VR®] - R-MR]. (50)

where R(t) denotes now the interpolating polynomial and replaces Q(t) in (33).

The application of the GSHMC method, as described in Section IV, is now straightforward.

Numerical results will be presented in Section VIL

We finally note that the equations of motion (45) subject to holonomic constraints (such as bond
stretching and bending constraints) can be treated numerically by the SHAKE extension {22} of
the standard Stérmer-Verlet/leapfrog method. The associated modified energies remain
unaffected by that extension and the fourth-order modified energy, in particular, is still provided

by the expression (50).
B. Constant temperature and pressure (NPT) GSHMC

We first summarize the constant energy and pressure formulation of Andersen [16). We then
discuss a symplectic and time-reversible integration method and derive its fourth-order modified
energy. This provides the essential building block to extend the GSHMC method to molecular

simulations in an NPT ensemble.
1. Constant pressure molecular dynamics

Given a classical molecular system described by 44), the constant pressure and energy (NPE)
formulation of Andersen is derived as follows. The coordinate vector r € R*Y in (45) is
replaced by a scaled vector d € R*" defined by

d =r/V'"™ (51)
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where V is the volume of the simulation box. Consider now the extended Langragian density

£(d.4.d,q) = {%(1?/3 4. [..wa] — V(q'd) + ’E‘qﬂ - oq} . (52)

We interpret ¢ as the (dynamic) value of the volume V and call this additional degree of
freedom the ‘piston’ degree of freedom. The constant & corresponds to the external pressure

acting on the system and £> 0 is the mass of the ‘piston’.

Upon defining a = (d'.9)" € R".m = 3N + 1 we find that (52) fits into the general form (2)

with non-constant mass matrix

M= | MO (53)
0 u
The associated NPE equations of motion are now easily derived using (3). See also Andersen’s
original publication [16]. The conserved energy H can be derived from the Lagrangian density
(52) according to the standard formula (5), i.e.,
H=d VeL+§ViL—-L

=%q"’/"d - [M c'l] + %q? + V(¢"*d) + aq

| Y _ 1 . . .
=_2_q--/-ipd_ [-;u lPd] + 5221)2 + 1"(ql/"d) +aq
1 -1 , 1,
=5Pr: [A-!p,] + V(r) + 2—“1) + aq. (54)

where
pa = ¢ Md. p=4q (55)
are the conjugate momenta in the NPE formulation and Pr = M1 = Pe/9'”is the classical

momentum vector of the NVE formulation (44).
2. A time-reversible and symplectic implementation

We use the previously developed discrete variational principle to derive a symplectic time-
stepping method and obtain the generalized leapfrog method

(s'+ {% [(qn)'uu + (‘In-l)')/fl] AM 15,-(1"} = _Vdv((qn)l/udn) (5())

and
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ny=1/1
1o A gt = (i-’c—— {ord" - (M} d] +o7d - [Ma7d"}} - o = U,V ((¢) "), (57)

The equivalent generalized Stormer-Verlet formulation is defined as follows.
(d".¢",P3.7"), we first find 4"*' and ¢"*' from the equations

- . n+l dr . .
pi = ;15 [(q“‘”)"“ + (") u (-———d Y, ) + %Vu"((‘l'“)"d")

. qu+l - l[" A' 13 dn+l - d") (du-H - dn)}
b ’“( At ) s At M At

At . "
+ 5 [VaV ((¢")/*d™) + ] .

and

The values for P and #"*' are explicitly given by

n+l _ gn
] [(qu+l).','-5+ (‘]'1)2/3] M (d d

ndl _
p(l -

ned o l]"“ - q" é& i ly—-1/3 d"+1 -4 ‘ . d,a+1 -d"
P = (—_—At ) + 5 (") —xr Al = %

— 2OV +a].

A' L4 " », w
2 ) - TR

and

This completes one time step.

Given

(59)

(GO)

(61)

The time-reversible and symplectic method (58)-(61) allows for the implementation of a hybrid

Monte Carlo methods as proposed in [2]) and described in more detail in [23]. We now derive a

fourth-order modified energy for the GSHMC method.

Let Q(t) and D(t) denote the interpolation polynomials along numerical trajectories {¢"}and

{d"}, respectively. Then the associated fourth-order modified energy, defined by (33), is given

by
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M =h + S8 [2u0Q" - 4]

At 2/ ) ~d [y i YIS T
+—{4D (@4 D¥] - 6D (@M D] +4D - 3 [@ MD]

‘“ {31) [Q"WI\ID] 415-%[@'—’/31\11')]}

—m+ 2L { 20QQ - uQ? + 20D - [ DY) - @¥*D - [M D] }

40 402 \ - ) 2 o [

with H given by (54).
3. A modified PMMC step

The one-step formulation (58)-(59) together with (60)-(61) will be used in the GSHMC method
according to preferred invention embodiments. After each completed NPE molecular dynamics

sub-step, we refresh the momenta Pd and P as described in Section IV.

Following the Langevin piston method of Feller et al. [17], one can also apply the following
simplified momentum update. We always keep the particle momentum Pd and only refresh the

“piston” momentum », i.e., we replace (11) by

uy = uy, (63)

Pa = —Pd, (64)

v = sin(@) p + cos(d) u (65)

p' = — cos(¢) p + sin(¢) u, (66)
with

u=g""u%  £~N(O,1). (67)

The probability (37) is replaced by
exp (-/3 [Hm(d,(h Pa. 7)) + 5, (v )2])
exp ( [’Hm(d q.Pa,p) + o,, ])

P(d,q,py.p, .9, v') = min | 1, , (68)

4
where Hat is an appropriate modified energy, €.g., Hae = HlAlz with Hm given by (62).
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Given a collision frequency 7 for the Langevin piston method [17], we choose bandT = LAL
such that = V277 < 1 and the resulting GSHMC method can be viewed as a rigorous
implementation of the Langevin piston method in the sense of section 1IC under the assumption
of ergodicity of the induced Markov process. Note that, on the contrary, the Langevin piston
method combined with the Brunger, Brooks, Karplus (BBK) time-stepping algorithm [24] leads

to statistical errors proportional to A¢2. In particular, one needs to require that YAt is small.

VL. ALGORITHMIC SUMMARY OF THE GSHMC METHOD

We summarize the algorithmic implementation of an embodiment of the GSHMC method for

the fourth-order modified energy (33) as follows:
A. MDMC step of GSHMC

Given an accepted MC sample with generalized position vector q and momentum vector p, we

determine the associated modified energy 7‘2‘: (g, p) by integrating the equations of motion two
steps forward and backward in time using (22)-(23) in order to construct the required
interpolation polynomial Q(¢) as defined in section IV A.

The equations of motion are then solved forward in time over L time steps using the symplectic
and time-reversible method (22)-(23). Denote the result by (q', p').

An additional two time steps are performed to evaluate the associated modified energy Hk‘, (q',

p') and the proposal step (q', p') is accepted with probability
min (1, exp(~B{HE) ' p') - Hik(a.P)}) (69)

In case of rejection, we continue with (q', p') = (q, -p).
B. PMMC step of GSHMC

Using a change of variables as, for example, defined by (41), we first compute P = ¥(q',p', &),
The momentum vector B is now mixed with a noise vector u distributed according to (12). We

formally set q" = q' and define
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u _ cos(@) —sin(o) u . (10)
P sin(@) cos(¢) P’

The proposal momentum vector p", implicitly defined by P* = ©(a".P".8) s accepted with
probability

(71)

(oo (8 Ml p) + ) M) ] )
min { 1, .
exp (—ﬂ [H'Sl(qﬂ P+ %uTM(q')“u])
where two time steps forward and backwards need to be performed in order to evaluate Hae

(q", p"). In case of rejection, we continue with (¢", p*) =(q', p')-

A single GSHMC step is now completed. We store the accepted MC sample as (Qu1, Pist) =
(", p") and evaluate the associated weight factor Wi+1using (43).

C. Comments

We summarize here a few general comments on the GSHMC method according to preferred

invention embodiments.

() Note that different angles ¢ can be assigned to different components of u and ' in
(70). This freedom has been used in section V B 3.

(ii) Note also that the summary of the GSHMC method has been formulated such that
the number of necessary momentum flips is minimized. This is in contrast to the
(entirely equivalent) presentation used so far, which has been based on the detailed

balance requirement.

(iii) The number of additional force evaluations for GSHMC with P = p over standard
HMC amounts to p — 2, where p is the order of the modified energy. For example,
GSHMC with (33) requires two additional force evaluations per complete Monte

Carlo step.

The change of variables (41) requires additional force evaluations [12).
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(iv) The time step At and the angle ¢ should be chosen such that the probability of
having both the MDMC as well as the PMMC step being simultaneously rejected is
less than 1%. This is because we obtain qu = q, and puy = -p; in such a case,
which leads to the undesired Zitrerbewegung in the MC samples.

This requires, in general, a decrease of @ in (70) as the system size, d = 3N,
increases. Furthermore, the discussion in [16] on a dynamically consistent collision
frequency 7 for a small volume of liquid surrounded by a much larger volume

suggests that & o v/2 o< 1I/N'/ where N is the number of atoms.

(v) In case the PMMC step is performed with a change of variables as defined, for
example, by (41) to replace p with a linear constitution of atoms, we refer to the
resulting method as the GS2HMC method (in analogy to the S2HMC method of

(12)).

In case of P = p, we continue using the acronym GSHMC.

VII. NUMERICAL RESULTS

Preferred embodiments of the present invention will now be described, purely by way of

example, with reference to the accompanying drawings, in which:-

Figure 1 shows normal probability plots for volume and temperature fluctuations from HMC

and GSHMC implementation of Andersen’s constant pressure formulation;

Figure 2 shows PMMC acceptance rate vs. MD step-size At and MD length 7 for fixed angle
¢ =/,

Figure 3 shows PMMC acceptance rate vs. @ for fixed step-size At = 2 fs and MD simulation
length 7 =2 ps;

Figure 4 shows mean-square displacements of the protein centre-of-mass vs. ¢,

Figure 5 shows VMD [29] ribbon diagram of 2LZM illustrating locations of catalytic residues
Glul1, Asp20, and Thr26;

Figure 6 shows autocorrelation function of main chain torsion angle ® of residue Thr26;
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Figure 7 shows autocorrelation function of main chain torsion angle ‘¥ of residue Thr26; and

Figure 8 shows autocorrelation function of side chain torsion angle y; of residue Thr26.

In this section, we perform three sets of experiments forming three demonstrations of
embodiments of the invention. The first set is based on an NVT simulation of argon and
assesses rejection rates for several MC methods in the context of sampling. The second set of
experiments is based on an NPT simulation of argon. Here we compare the GSHMC algorithm
and the Langevin piston method of Feller et al. [17) and assess the performance of GSHMC in
the context of stochastic dynamics simulations. We finally implement GSHMC for a larger
biomolecular system, the bacteriophage T4 lysozyme protein, and compare the sampling

efficiency of GSHMC to constant temperature MD using the Berendsen thermostat [25].

A. Argon

We perform simulations for argon in a periodic box under an NVT and NPT,
respectively, ensemble. We now present numerical results for both ensembles. We begin

with the NVT simulations.
1. NVT simulations

We perform NVT simulations at a temperature of T = 120 K using the following two

settings:
(A) N=5,L=20.1A,
(B) N=8,L=3196A.

We implement the GSHMC method with three values of the angle ¢ (7/2. ¢ = 7/4 and
¢ = 7/8) in the PMMC step. We also implement the GSHMC method with the modified
momentum refreshment step, as defined by (41), with ¢=1/2 We refer to this
implementation as GS2ZHMC.

Results are compared to implementations of the standard HMC method and the newly
proposed S2HMC method of [12].
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All Monte Carlo (MC) implementations use 7 = LAt = 2.17 ps and generate a total of
K = 10' Monte Carlo samples to compute expectation values according to (42).
Simulations are performed for four different values of At (7/50 = 434 . T/75 = 289 I,

/100 ~ 21.7 fs, 7/200~ 10.9 fs),

TABLE I: Rejection rates for MDMC and PMMC steps, respectively, for all tested

MDMC/PMMC rejections |At ~ 43.4 fs|Af =~ 28.9 fs| At = 21.7 fs| At =~ 10.9 fs
GSHMC method, ¢ = n/2 | 20% / 23% | 2% / 12% | <1% [ 6% | <1% / 2%
GSHMC method, ¢ = 7/4 | 22% / 17% | 2% /8% | <1% [ 4% | <1% [ 1%

GSHMC method, ¢ = n/8 | 21% / 9% | 2% /5% | <1% /2% |<1% [/ <1%

CGS2HMC method, ¢ = 7/2|19% / <1%| 2% [ <1% |<1% / <1%|<1% / <1%
S2HMC wmethod 20% /NA | 1% / NA | <1% /NA | <1% /NA
HMC method 22% /NA | 9% /NA | 6% /NA | 2% /NA

methods under the experimental setting A.

MDMC/PMMC rejections

At~ 43.4 fy

At ~289 fs

At=21.T1s

At ~109 s

GSHMC method, ¢ = n/2

33% / 37%

3% / 19%

<1% / 10%

<1% [/ 3%

GSHMC method, ¢ = n/4

33% / 27%

3% / 12%

<1% / ™%

<1% / 3%

GSHMC method, ¢ = n/8

32% /15 %

3% / 7%

<1% / 4%

<1% / 1%

GS2HMC method. ¢ = /2

32% / <1%

3% / <1%

<1% / <1%

<1% [ <1%

S2HMC method

33% / NA

2% / NA

<1% / NA

<1% / NA

HMC method

99% / NA

15% / NA

10% / NA

3% / NA

TABLE II: Rejection rates for MDMC and PMMC steps, respectively, for all tested methods

under the experimental setting B.

We state rejection rates for the MDMC step and the PMMC step (where applicable) in

table [ for setting A and in table II for setting B, respectively. We observe an increase in
rejection rates for all methods for increasing system size d and step-size At. The
acceptance rate for the MDMC step is similar for all GSHMC and S2ZHMC
implementations and is consistently better than the corresponding rate of standard HMC.
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The acceptance rate of PMMC step in GSHMC improves with smaller values of . The
GS2HMC method almost reaches the perfect behaviour of S2ZHMC and HMC in terms of
momentum resampling. One should note, however, that the transformation step 41)

requires additional force evaluations.

energy E [120 k, K||ditfusion D [A? ps~!]|pressure P [kN/cm?]
GSHMC method, ¢ = /2 -442.6 £ 33.6 0.2873 £ 0.0564 0.5904 £+ 0.7302
GSHMC method, ¢ = n/4 -442.7 + 32.8 0.4782 £ 0.1275 0.5881 % 0.7204
GSHMC method, ¢ = 7/8 -442.0 £ 31.2 0.7742 % 0.1465 0.5958 £ 0.7049
GS2HMC method, ¢ = 7/2] -441.0 £ 33.2 0.2927 + 0.0205 0.6515 £ 0.7317
S2HMC method -441.9 = 32.6 0.2877 £ 0.0668 0.6630 £ 0.7266
HMC method -438.0 + 33.8 0.2691 + 0.0219 0.6571 £ 0.7344

P108857GB00

TABLE III: Expectation values and their standard deviation range for total energy, E,
diffusion constant, D, and pressure, P, from numerical experiments using setting A and
At=289fs.

We also give expectation values of total energy, E, diffusion constant,

L (t) - r(O)],

D

and pressure, P, as well as their standard deviation range (corresponding to the 95%
confidence interval of normally distributed data) for the experimental setting A and
At =1/75 = 28.9 fs in table 1. All methods lead to comparable results in terms of total
energy, E, implying that all methods correctly sample from the canonical ensemble. More
remarkably, the diffusion constant, D, increases significantly for smaller values of ¢ in
the PMMC step of GSHMC. This confirms the fact that HMC methods influence the
dynamical properties of a molecular system. Pressure, P, ﬂuctugtes largely for all

methods, which is not unexpected for a small molecular system such as that of setting A.
2. NPT simulations

We now simulate N = 125 argon atoms at constant temperature 7 = 120 K and constant
pressure P = 0.65+ 10’ Nm™.
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We implement a standard constant pressure and temperature HMC algorithm (see, €.g.,

[23]) and compare the results to the corresponding GSHMC implementation of section

VB with® = 7/2,

The simulation parameters are as follows. Both methods are implemented with a step-size

of At = 10.9 fs, samples are taken at in intervals of v = ..M =217 ps, ie, L = 200,
and the total number of samples is K = 10*. The mass of the piston degree of freedom is

set equal 10 # =6, and @@ = 0.65* 10’ N m™.

pressure [x 107 N m~2)|temperatnre [K]jenergy [120 kg K]

CSHMC method ¢ = /2] 0.6492 % 0.8450 120 £ 17 -330 + 49
HMC method 0.6342 + 0.8404 120 £ 17 -331 £ 49

TABLE IV: Mean values and their standard deviation range for pressure, P, temperature,
T, and total energy, E, for GSHMC and HMC implementation of Andersen’s constant

pressure formulation.

pressure [x107 N m~2)|temperature [K||energy [120 kp K]

GSHMC method 0.6500 = 0.8425 118 £ 14 340 £ 11
Langevin piston, BBK algorithin]  0.6477 & 0.8580 123 + 18 -314 £ 45

TABLE V: Mean values and their standard deviation range for pressure, P, temperature,
T, and total energy, E, for GSHMC and Langevin piston BBK simulation of the NPT

ensemble.

We compare pressure, P, temperature, T, and total energy, E. Mean values and their
standard deviation range can be found in table IV. We also verify that the volume and
temperature fluctuations are Gaussian distributed. We display the results for the GSHMC
and HMC method in figure 1. Both methods lead to very similar distributions. The

temperature distribution is almost ideal while the volume fluctuations display some non-
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Gaussian behaviour in the tails. The effect can be attributed to the finite size of the

sample.

We also implement the constant pressure and temperature GSHMC algorithm using the
partial momentum update (63)-(66) and compare the results to the Langevin piston
method of Feller et al [17]. The Langevin piston equations of motion are implemented
using the Brunger, Brooks, Karplus (BBK) algorithm [24].

The simulation parameters are now as follows. Both methods are implemented with a

step-size of At = 21.7 fs, samples are taken at in intervals of 7 = LAt=0217ps, ie,
L =10, and the total number of samples is K =2 x 10%. The mass of the piston degree of
freedom is set equal to £ = 6, & = 0.65 * 10’ N m?, and the collision frequency in the
Langevin piston is set equal to 7 = 0.1152 ps'. The angle, @, in (65)-(66) is determined
according to ¢ = V2827 ~0.2236, Both methods are started from an equilibrated

configuration.

We compare pressure, P, temperature, T, and total energy, E. Mean values and their
standard deviation range can be found in table V. Note that both methods couple to a
constant temperature ‘heat bath’ only through the piston degree of freedom. The results
from both methods are in agreement (to within the expected errors given the simulation
length, the system size, and the weak coupling to the 'heat bath’) with the desired NPT

ensemble.

B. _ Lysozyme protein in water

A larger molecular system, the bacteriophage T4 lysozyme protein (pdb entry 2LZM), is
simulated to compare the sampling efficiency of GSHMC and constant temperature MD.
A united atoms representation is used to eliminate all hydrogen atoms from the protein,
and water is modelled using the SPC model [26]. The total number of atoms is 23207,
which are placed in a rhombic dodecahedron simulation box. Both simulation
approaches, MD and GSHMC, use GROMACS 3.2.1 [27] to perform the molecular
dynamics steps. Specifically, a switch cut-off scheme is used for Lennard-Jones

interactions. Coulomb interactions are treated using a particle-mesh Ewald summation
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(PME) method [28, 29). The full direct and reciprocal space parts are calculated in each
step and a lattice spacing of 0.1 nm is applied. All bonds are constrained using the

SHAKE method [22) with a relative tolerance of 10-" allowing for a step-size of At =2
fs.

The system is initially equilibrated for 1 ns using standard MD techniques. The MD and
GSHMC simulations are then performed for another 1 ns at a temperature of 300 K. In
the traditional MD approach the temperature is coupled ta a heat bath of 300 K using the

Berendsen thermostat with a coupling time constant of 0.1 ps [25].

To find the optimal settings for GSHMC production stage we investigate the effect of
different simulation parameters on the sampling efficiency of GSHMC. A set of

comparatively short simulations are performed using three different step-sizes At (1, 2
and 4 fs), two different MD simulation lengths T (2 and 4 ps), five values of the angle
¢ (r/24, ©/12, 03 0.5, 7/2)and two values of the order p (4, 6) for the modified
Hamiltonian 7). The results of this study are shown in figures 2 and 3.

Since we found that acceptance rate for MDMC step was consistently high (98-100%) for
all tested parameters, we present here the results for the acceptance rate in the PMMC
step only. Figure 2 demonstrates the effect of step-size and MD simulation length on the
momentum acceptance rates whereas figure 3 shows how the momentum acceptance rate
depends on the angle ®. The momentum acceptance rate was found to be essentially

independent of the order (here 4th and 6th order) of the modified energies.

It can be concluded from figures 2 and 3 that smaller step-sizes, larger MD simulation

lengths, and smaller values of # induce a higher acceptance rate in the PMMC step. A

nearly optimal choice of the parameter ® and the step-size At is crucial for the
performance of GSHMC. Choosing ¢ = /2 is found to be not efficient for this large

systern.
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We have to stress that the PMMC step is cheap compared with the MDMC step. To
decrease the rejection rate of the PMMC step one can repeat the step a desired number of

times. This strategy is efficiently implemented in parallel in our code.

In addition, we consider the evolution of the mean-square displacement of the centre-of-
mass (c.o.m.) of the protein for GSHMC simulations using two different values of
¢ = m/24apnd ¢ = 7/12, We find that the c.o.m. mobility of the protein in GSHMC

simulation increases with an increasing of . This is shown in figure 4.

To perform a comparison between GSHMC and MD simulations we run the GSHMC

simulation with a step-size of At = 2 fs, the number of MD steps in MDMC equaltoL =
1000, and ¢ = 7/12 on ten processors of a PC cluster. We use a sixth-order modified

energy.

To compare the sampling efficiency of different sampling methods with respect to an
observable 2, we evaluate the integrated autocorrelation function values of a time series
{Qi}i'ix, where K is the number of samples [15]. The integrated autocorrelation function
value is defined by

K'
4a=30C(n), (73)

=
where C(1),L=1...,K' < K is the standard autocorrelation function for the time series
{Q:}£, with the normalization C(70) = C(0) =1, The integrated autocorrelation function
value provides a good measure for the efficiency of a sampling method since, on average,
1 + 2Aq correlated measurements §2,are needed to reduce the variance by the same amount as a
single truly independent measurement of 2.

We present the autocorrelation functions for the dihedrals of Asp20, Glull and Thr26
residues in figure 5. These dihedrals are known to be critical catalytic residues in lysozyme. In
fact, it has been reported that the catalytic activity of most lysozymes is largely due to
three amino acids. In the case of the bacteriophage T4 lysozyme, catalysis takes place due
to the concerted action of Glul1, Asp20, and Thr26 with the substrate [31-35].
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The autocorrelation functions C(7) for the main chain torsion angles @, ¥, and a side
chain torsion angle y; of the Thr26 residue are shown in figures 6, 7, and 8, respectively,
for Tt < 100 ps.

AMD / AGSHMC| A5p20| Thr26
o 38 | 14.0
7 34 | 45

TABLE VI: Comparison between GSHMC and MD in efficiency for sampling of main
chain torsion angles of important catalytic residues. 4#°/48*"C is the ratio of integrated

autocorrelation function values obtained from MD and GSHMC simulations.

AND/AGSHMC|Glu11{ Asp20| Thr26
X1 554 | 1.0 | 2.69
X2 7.1 | 1.56 | NA
X3 376 | NA | NA

TABLE VII: Comparison between GSHMC and MD in efficiency for sampling of side
chain torsion angles of important catalytic residues. AH°/A§™" is a ratio of integrated

autocorrelation function values obtained from MD and GSHMC simulations.

Computed integrated autocorrelation function values, Aq, are based on autocorrelation
functions C(71) and Tt <500 ps. Ratios of integrated autocorrelations function values for
the main chain torsion angles @, ¥ and side chain torsion angles X1, X2, X3 for residuces
Asp20, Glull and Thr26, as observed during GSHMC and MD simulations, are
presented in table VI and table VII, respectively. As shown in tables VI and VII, GSHMC
requires less (up to 14 times!) iterations (MD steps) than standard MD to achieve one
statistically independent sample for all torsion angles of catalytic residucs Asp20, Glull
and Thr26.
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ViIl. SUMMARY

We have presented a more efficient implementation of the GHMC method, which is based on
the use of modified energies. The resulting GSHMC/GS2HMC methods allow the user to either

perform pure sampling or stochastic dynamics simulations.

In the case of sampling, the GS2HMC method has the advantage of keeping the acceptance rate

in the PMMC step high without having to make @ smaller as the system size increases.

However, the transformation step (41) requires additional force field evaluations. Repeated
application of the PMMC step with a reduced value of ¢ and P =P, i.c. no transformation,

provides a viable altemnative.

The GS2HMC method behaves similarly to the recently proposed S2HMC method. An
advantage of GS2HMC over S2HMC is that it can be combined with higher-order (higher than
fourth order) modified energies and that it can be used with partial momentum refreshment. To
take full advantage of higher-order modified energies, the force field evaluations have to be

performed accurately enough and sufficiently smooth cut-off functions need to be implemented.

For small values of ¢ = V27BI, je. stochastic dynamics simulations, the GSHMC method
without the transformation (41) is to be recommended since the acceptance rate in the PMMC
step of GSHMC is high for small values of ® and since GSHMC is cheaper to implement than
GS2HMC.

Numerical experiments have demonstrated that GSHMC/GS2HMC are suitable for NVT as well
as NPT simulations. In particular, we have shown that GSHMC/GS2HMC outperform both
classical MD as well as standard HMC in terms of sampling. Furthermore, GSHMC provides a
statistically rigorous simulation tool for stochastic dynamics in an NVT or NPT ensemble.

IX. IMPLEMENTATION AS A COMPUTER PROGRAM

In any of the above aspects, the various features may be implemented in hardware, or as
software modules running on one or more processors. Features of one aspect may be applied to

any of the other aspects.
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The invention also provides a computer program or a computer program product for carrying
out any of the methods described herein, and a computer readable medium having stored
thereon a program for carrying out any of the methods described herein. A computer program
embodying the invention may be stored on a computer-readable medium, or it could, for
example, be in the form of a signal such as a downloadable data signal provided from an

Internet website, or it could be in any other form.
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Appendix 1

We derive the sixth-order modified energy. Following the approach of section IV A we first

derive a modified Lagrangian density to sixth order:

(325e) ol )

Lo =~
1=} =]

X pyi-bAgi=1 O avi~lppi=l
+%(ZL'&';T£—Q(")'[J\4(Q) (Z(—HTA—'—Q"’)]“"‘Q%

=1 1=l

=L + AP OLY + At 6LY + O(AL°) (74)
where £ is given by (2), 64 by (30), and 8L by

509 = == {6 Q- [M(Q) Q] +15Q- [M(Q) Q) +20Q¥ - [M(Q) Qw]}. ()
Hence, we define the sixth-order modified Lagrangian density by

L = £+ asch + ALt (76)

and higher-order modified Lagrangian can be found by including higher-order terms in the

expansion (74). The sixth-order modified energy is now given by

5 fi-1 6} .
Wt =SS [ 58] -0} - 2 "

i=) \ =0

with the generalization to higher-order again being straightforward.
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Appendix 2

The GSHMC method can be used to solve statistical inference problems in the same manner as
the hybrid Monte Carlo (HMC) method can be applied to such problems (see, €.g., [36, 37]). In
particular, in a Bayesian framework, all inference problems can be reduced to the evaluation of
certain expectation values with respect to the posterior distribution of unknown variables. This
target posterior distribution can always be written out explicitly, up to a normalization constant,

as
(@ f(y19 To(Q) = exp(-¥(q)) (1)

where f is the probabilistic model that connects data y with unknown parameters q, T is the

prior distribution in q (which is often assumed to be Gaussian), and

V(q) = -log f(y | @) -log 7o (q). @
In order to use the GSHMC to sample the posterior distribution (1), we introduce an auxiliary

‘momentum’ variable p, a (constant) symmetric mass matrix M and the ‘guide Hamiltonian’
1
H=cpM'pl1+ V(@ €))

with associated Newtonian equations of motion

a='p, p =-YaV(a) )
These equations can be integrated in time by a symplectic and time-reversible method such as
Stérmer-Verlet. The resulting propagator U, with appropriate reference Hamiltonian Hat, is
then to be used in the MDMC part of the GSHMC method. The PMMC part and the re-

weighting procedure for expectation values remain unchanged.

P108857GB00 GSHMC ALGORITHM



(1]
(2}
131
(4]
(51
(6]
7

(8]

(9]
[10]
(11}

(12]

[13)

[14]
(15]
[16]
n7
(18]

[19]

(20
[21]
[22]
[23]
[24]

36

S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, Phys. Lett. B 198, 216 (1987).

B. Mehlig, D. Heermann, and B. Forrest, Phys. Rev. B 45, 679 (1992).

J. Izaguirre and S. Hampton, J. Comput. Phys. 200, 581 (2004).

G. Benettin and A. Giorgilli, J. Stat. Phys. 74, 1117 (1994).

E. Hairer and C. Lubich, Numer. Math. 76, 441 (1997).

S. Reich, SIAM J. Numer. Anal. 36, 475 (1999).

B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics (Cambridge University
Press, Cambridge, 2005).

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration (Springer-Verlag,
Berlin Heidelberg, 2002).

B. Moore and S. Reich, Numer. Math. 95, 625 (2003).

R. Skeel and D. Hardy, SIAM J. Sci. Comput. 23, 1172 (2001).

C. Sweet, S. Hampton, and J. Izaguirre, Tech. Rep. TR-2006-09, University of Notre
Dame (2006).

C. Sweet, S. Hampton, R. Skeel, and J. Izaguirre, Tech. Rep., University of Notre Dame
(2007).

E. Akhmatskaya and S. Reich, in New Algorithms for Macromolecular Simulations, edited
by B. L. et al (Springer-Verlag, Berlin, 2006), vol. 49 of Lecture Notes in Computational
Science and Engineering, pp. 145-158.

A. Horowitz, Phys. Lett. B 268, 247 (1991).

A. Kennedy and B. Pendleton, Nucl. Phys. B 607, 456 (2001).

H. Andersen, J. Chem. Phys. 72, 2384 (1980).

S. Feller, Y. Zhang, R. Pastor, and B. Brooks, J. Chem. Phys. 103, 4613 (1995).

M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford,
1987).

R. MacKay, in The dynamics of numerics and the numerics of dynamics, edited by D.
Broom-head and A. Iserles (Clarendon Press, Oxford, 1992), pp. 137-193.

S. Gupta, A. Irbick, F. Karsch, and B. Pterersson, Phys. Lett. B 242, 437 (1990).

R. Burden and J. Faires, Numerical Analysis (Brooks Cole, 2004), 8th ed.

J. Ryckaert, G. Ciccotti, and H. Berendsen, J. Comput. Phys. 23, 327 (1977).

R. Faller and J. de Pablo, J. Chem. Phys. 116, 55 (2002).

A. Bru'nger, C. Brooks, and M. Karplus, Chem. Phys. Lett. 105 (1984).

P108857GB00 GSHMC ALGORITHM



(25]

[26]

[27]
(28]
[29]

(30}
(31}

[32]
[33]
[34]
[35]
(36]
371
2001).

37

H. Berendsen, J. Postma, W. van Gunsteren, A. DiNola, and J. Haak, J. Chem. Phys. 81,
3684 (1984).

H. Berendsen, J. Postma, W. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited
by B. Pullman (D. Reidel Publishing Company, Dordrecht, 1981), pp. 331-342.

E. Lindahl, B. Hess, and D. Spoel, J. Mol. Modeling 7, 305 (2001).

T. Darden, D. York, and L. Pedersen, J. Comput. Phys. 98, 10089 (1993).

U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J.
Comput. Phys. 103, 8577 (1995).

W. Humphries, A. Dalke, and K. Schulten, J. Molec. Graphics p. 33 (1996).

W. Anderson, M. Gru'tter, S. Remington, L. Weaver, and B. Matthews, J. Mol. Biol 147,
523 (1981).

L. Hardy and A. Poteete, Biochemistry 30, 9457 (1991).

R. Kuroki, L. Weaver, and B. Matthews, Science 262, 2030 (1993).

R. Kuroki, L. Weaver, and B. Matthews, Nat. Struct. Biol. 2, 1007 (1995).

R. Kuroki, L. Weaver, and B. Matthews, Proc. Natl. Acad. Sci. 96, 8949 (1999).

R. Neal, Bayesian learning for neural networks (Springer-Verlag, New York, 1996).

J. Liu, Monte Carlo Strategies, in Scientific Computing (Springer-Verlag, New York,

P108857GB00 GSHMC ALGORITHM



38

CLAIMS:

. A method of simulating behaviour of a molecular system with m degrees of
freedom over time comprising a partial momentum refreshment step and a molecular dynamics
step, wherein the partial momentum refreshment step comprises:

given a starting position q and a starting momentum p of the molecular system,

partially refreshing the momentum to define refreshed momentum p’ using a noise vector u,

where:

u’ cos(¢) sin(@)
P sin(¢) —cos(#) / \ P

=}

where
p’, p : refreshed and current momentum,
0<o<7/2
u’, u : new and current noise vectors,
u= B-WM(Q)I/ZE; &~N(0,1),i=1,...,m, N(0,1) denoting the normal
distribution with zero mean and unit variance,
M: mass matrix,
B=1/KBT where T is temperature;

evaluating the shadow Hamiltonian Hatat position q and momentum p'; and

accepting or rejecting the refreshed momentum p’ according to a Metropolis-type
function and if p’ is accepted using p’ as the resulting momentum p and starting position q as
the resulting position q or if it is rejected, using p as the resulting momentum p and starting
position q as the resulting position;

and wherein the molecular dynamics step comprises:

given a starting position q and starting momentum p of the molecular system, running a
molecular dynamics simulation over a fixed number of iterations and obtaining new position q’
and new momentum p’;

evaluating the shadow Hamiltonian Hae at position q' and momentum p’ after the
molecular dynamics simulation; and

accepting or rejecting the new system configuration produced by the molecular dynamics
simulation according to a Metropolis-type function and, if the new system configuration is

accepted, using q' as the resulting position q and p’ as the resulting momentum p or, if it is
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rejected, using the original starting position q as the resulting position q and negating the
original starting momentum p to give the resulting momentum p;

wherein either the partial momentum refreshment or the molecular dynamics step is the
first step of the method, and the resulting position and resulting momentum of the first step

provides the starting position q and starting momentum p for the next step.
2. A method according to claim 1, wherein the entire method is repeated at least once.

3. A method according to claim 1 or 2, wherein the first step in the method is the

partial momentum refreshment step.

4. A method according to any of the preceding claims, wherein the partial momentum
refreshment step constitutes a multiple partial momentum refreshment step, in which the entire
partial moment refreshment step is repeated a selected number of times consecutively, to

provide a final resulting momentum.

5. A method according to any of the preceding claims, wherein ¢ = 7/2 and the

method is suitable for sampling without preserving dynamic information.

6. A method according to any of claims 1 to 4, wherein ¢ = VAT < 1 where
Y : collision frequency constant;
7 = LA, where

L : chosen number of molecular dynamics iterations;

At : time step;

and the method recovers statistically rigorous stochastic Langevin dynamics.

7. A method according to claim 6, wherein L is chosen to be equal to 1 to implement
the Langevin Monte Carlo algorithm.

8. A method according to any of the preceding claims, wherein a value of parameter ¢

in the momentum refreshment step is decided separately for each molecule in the system.
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9. A method according to any of the preceding claims, wherein P, a modified value

for momentum p, is used in the partial momentum refreshment step to give:

u’ cos(®) - sin(¢@) u
P’ sin(¢) cos(¢) / \ P

10. A method according to claim 9, wherein the modified value for momentum Pisa

function of momentum and position over time, preferably given by

p = v(q, p. At); and more preferably given by

B = ¥(a,p.At) = p— 5 (VaV(a*) - VaV(a?)

where ' is a map which is invertible in the momentum vector p and A4V is the derivative of the

potential energy V with respect to Q.

11. A method according to any of the preceding claims, wherein the refreshed

momentum p’ is accepted with probability

exp (=B [Haa. p') + 3(w)"M(q)"'u])
exp (-8 [Haclq.p) + %UTM(Q)'IU])

P(q,p,u,p’ u’) = min (1,
where
p', p : refreshed and current momentum ;

u', u : new and current vectors of auxiliary variables Y = B~ M(q)' /%,
u = 72 M(q)V%, &L~N(0,1),i=1,....,m; M: mass matrix;
8 = 1/KpT; and Hatis a shadow Hamiltonian.
12. A method according to any of the preceding claims, wherein each molecular
dynamics iteration includes describing the forces on the atoms of the molecules of the molecular

system using a chosen force field, integrating Newton’s equation to predict the positions and

velocities at a new time and recalculation of the forces.

13. A method according to any of the preceding claims, wherein Newton's equation of

motion in the molecular dynamics step is solved using a time reversible and symplectic method,
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preferably the generalized Stormer-Verlet method, more preferably the standard Stérmer-Verlet
method.

14. A method according to any of the preceding claims, wherein the new position q'

and new momentum p' in molecular dynamics simulation are accepted with probability

P(q.p.q’.p’) = min (1. exp(=/H{ M (d', P') = Hala. p)})
15. A method according to any of the preceding claims, wherein calculated properties

are re-weighted at the end of the entire method.

16. A method according to claim 15, wherein the re-weighting is performed using
K
Q) = Do Wi 12
- K .
Zi=0 Wy
w, = exp(—B{H(q;. pi)) — Harlq:. P)})
where values H is a true Hamiltonian and Ha¢ is a shadow Hamiltonian Q, i=0,

....K’, along a sequence of states (- Pi), i = 1...., I of any property of the system computed

by the method.

17. A method according to any of the preceding claims, wherein shadow Hamiltonians

"H of an appropriate order » =2k 2 4, k=1, 2.... of approximation are used.

18. A method according to any of the preceding claims, wherein the simulation

conditions provided correspond to an NVT (canonical) ensemble.

19. A method according to claim 18, wherein the simulation in the molecular dynamics

step corresponds to an NVE (microcanonical) ensemble.

20. A method according to any of the preceding claims 1 to 17, wherein the simulation

conditions provided correspond to an NPT (isobaric-isothermal) ensemble.

21. A method according to claim 20, wherein the simulation in the molecular dynamics

step corresponds to an NPE (isobaric) ensemble.
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22. A method according to any of the preceding claims, further comprising a step of

initially inputting simulation conditions and/or simulation parameters.

23. A method according to claim 22, wherein the simulation conditions include at least

one of volume, mass, temperature, pressure, number of molecules and total energy .

24. A method according to claim 22 or 23, wherein the simulation parameters include
at least one of the number of repetitions of partial momentum step and molecular dynamics step,
the order of shadow Hamiltonians used, the time step in molecular dynamics, the number of

molecular dynamics iterations, the starting position and momentum for the first step in the

method, the force field parameters and the constant @ for partial momentum refreshment.

25. A method according to claim or 21, wherein the partial momentum refreshment
step is applied to the “piston” momentum only, where “piston” is associated with the fluctuating

volume of the molecular system at constant pressure.

26. A method according to any of the preceding claims, wherein the method is carried

out using generalised co-ordinates.
27. A method according to any of the preceding claims, carried out by a computer.

28. A method according to any of the preceding claims, including the step of

displaying the results on a screen or printout.

29. A method of molecular simulation of a system over time comprising:
modelling the system using an atomistic model;
carrying out the method of simulating behaviour of a molecular system according to any

of the preceding claims; and

analysing the results obtained from the simulation and relating them to macroscopic level

properties.
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30. A method according to claim 29, further comprising using the relationship of the
results to the macroscopic properties to assess and optionally modify the system at the

macroscopic level, before repeating the method on the modified system.

31.  An apparatus which simulates behaviour of a molecular system with m degrees of
freedom over time, comprising partial momentum refreshment means for carrying out a partial
momentum refreshment step and molecular dynamics means for carrying out a molecular
dynamics step, wherein the partial momentum refreshment means comprises:

partial refreshment means for, given a starting position q and a starting momentum p of
the molecular system, partially refreshing the momentum to define refreshed momentum p’

using a noise vector u, where:

u’ _ cos(p) sin(¢)
P sin(¢) —cos(¢)

where
p', p : refreshed and current momentum,
0<ae < 1r/2,
u’, u : new and current noise vectors,
u=A"2M(q)"/%, &~N(@0,1),i=1,...,m, N(0,1) denoting the nommal
distribution with zero mean end unit variance,
M: mass matrix,
B = 1/KBT where T is temperature;

evaluation means for evaluating the shadow Hamiltonian Hat at position q and
momentum p'; and

decision means for accepting or rejecting the refreshed momentum p’ according to a
Metropolis-type function and if p' is accepted using p’ as the resulting momentum P and
starting position g as the resulting position q or if it is rejected, using p as the resulting
momentum p and starting position q as the resulting position;

and wherein the molecular dynamics means comprises:

molecular dynamics simulation means for given a starting position q and starting
momentum p of the molecular system, running a molecular dynamics simulation over a fixed

number of iterations and obtaining new position q' and new momentum p';
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evaluation means for evaluating the shadow Hamiltonian Hae at position q' and
momentum p’ after the molecular dynamics simulation; and

decision means for accepting or rejecting the new system configuration produced by the
molecular dynamics simulation according to a Metropolis-type function and, if the new system
configuration is accepted, using q' as the resulting position q and p’ as the resulting momentum
p or, if it is rejected, using the original starting position q as the resulting position q and
negating the original starting momentum p to give the resulting momentum p;

wherein the apparatus is configured such that either the partial momentum refreshment or
the molecular dynamics step is the first step of the method, and the resulting position and
resulting momentum of the first step provides the starting position q and starting momentum p

for the next step.

32. A computer program which, when executed on a processor, carries out the method

defined in any of the preceding method claims.

33. A method for sampling positions q according to a given probability distribution
function of the general form P(Q) exp(~A v (),

where V is a user defined cost function and # is a parameter, using canonical momentum
p, mass matrix M, and Hamiltonian energy H = 1/2 p* M p + V(q), where the mass matrix
depends on the positions q and the associated dynamics in (q, p) is of conservative, Newtonian
form; the method comprising:

generating a sequence of states (g; pi) with respect to the canonical distribution function
for a shadow Hamiltonian in two separate Markov chain Monte Carlo steps, a partial
momentum refreshment Monte Carlo step and a conservative dynamics refreshment Monte
Carlo step, wherein the partial momentum refreshment Monte Carlo step comprises:

given a starting position q and a starting momentum p of the system, partially refreshing

the momentum to define refreshed momentum p' using a noise vector where:
u’ cos(o) — sin{o) u
p’ sin(o)  cos(o) p

p’, p : refreshed and current momentum;
0<9<7/2

u’, u : new and current noise vectors,
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u= ﬂ_lle(Q)llzfa &~N(0,1),i=1,...,m, N(0,1) denoting the
normal distribution with zero mean and unit variance;
m: number of degrees of freedom of the system;

evaluating the shadow Hamiltonian Hat at position q and refreshed momentum p'
according to a Metropolis-type function and if p’ is accepted using p' as the resulting
momentum and starting position q as the resulting position or if it is rejected, using p as the
resulting momentum p and starting position q as the resulting position;

and wherein the conservative dynamics step comprises:

given a starting position q and starting momentum p performing a conservative dynamics
simulation with a time-reversible and simplectic method over a fixed number of iterations and
obtaining new position q' and new momentum p';

evaluating the shadow Hamiltonian Hat at q' and momentum p' after the conservative
dynamics simulation; and

accepting or rejecting the new system configuration produced by the conservative
dynamics simulation according to a Metropolis-type function and, if the new system
configuration is accepted, using q' as the resulting position q and p' as the resulting momentum
p or, if it is rejected, using the original starting position q as the resulting position q and
negating the original starting momentum p to give the resulting momentum p;

wherein either the partial momentum refreshment or the conservative dynamics step is the
first step of the method, and the resulting position and resulting momentum of the first step

provides the starting position q and starting momentum p for the next step.

34. A method according to claim 33, further comprising approximating expectation
values according to the desired probability distribution function p(q) or the Boltzmann
distribution for the Hamiltonian 7, respectively, as re-weighted averages along the generated

sequence of states (q;, pi)-

35. A method according to claim 33 or 34, comprising any of the features of the

preceding method claims 2 to 30.

36. A method, apparatus or computer program according to an embodiment set out in

the description and/or shown in the drawings.
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