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THERMODYNAMIC SYSTEMS

A method of simulating behaviour of a thermodynamic
system over time, comprising a momentum
refreshment process and a conservative dynamics
process. Wherein the momentum refreshment process
comprises given a starting position r and a starting
momentum p of a model, partially refreshing the
momentum to define refreshed momentum p' by
considering solutions for p' determined by a humerical
implementation for integrating a generating linear
differential equation and using the starting momentum
p or refreshed momentum p' as the resulting
momentum p and using the starting position r as the
resulting position .
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FIG. 3: Model A: Radial Distribution Function
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METHOD, APPARATUS AND COMPUTER PROGRAM FOR SIMULATING
BEHAVIOUR OF THERMODYNAMIC SYSTEMS

INTRODUCTION

The present invention relates to simulation methods which are generally in use for in-

depth investigation of thermodynamic processes.

According to the time-scale and to the physical scale which is to be simulated, different
simulation techniques are suitable. Fig. 1 is a diagrammatic illustration of the different
kinds of modelling used as the time for modelling and size of the model increase. At
the lower end, quantum mechanics takes more of a scientific rather than a practical
approach to model in the area of Angstrom units and picoseconds. Generally this area
of modelling deals with individual electrons and molecular mechanics deals with atoms.
Continuing up the scale, coarse-grained modelling refers to models in which a few
atoms which are close in terms of their properties are considered together as one
“particle” (or group of atoms determined by the simulation parameters. Approximately
the same approach can be taken with meso-scale modeliing, in which maybe hundreds
of atoms can be clustered to form one particle. Coarse-grained modelling is
appropriate from sizes of a few Angstrom units to sizes of a few micrometres. Meso-
scale modelling on the other hand can be interpreted as modelling on the scale of tens
of nanometres to millimetres. The reader will appreciate the overlap between these
two approximate scales. Finally, finite element analysis works on a continuum basis
rather than with particles and is a more practical way of investigating properties of

larger systems.

The present application is particularly, although not exclusively, concerned with coarse-
grained and meso-scale modelling. These scales can be seen as the transitional
regions between macroscopic and microscopic regimes. In such areas, atomistic
methods such as molecular dynamics can be too expensive, whereas continuum
solvers such as finite element analysis neglect the microstructure, which could lead to

inaccurate results.
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There are many phenomena which occur at meso-scales and merit careful study using
simulation. Fluid mixture properties, such as emulsions, surfactants and phase
separation in complex fluids can be investigated at meso-scale. Colloid suspensions
with their aggregation clustering and dispersion are another area of interest. Also, the
characteristics of a polymeric solution, such as melting characteristics and the
behaviour of a dense solution are well suited to meso-scale modelling. These are just

a few of the areas of application.

Fig. 2 shows just some of the different meso-scale modelling techniques currently
proposed for meso-scale modelling. Of these, the most common is probably

Dissipative Particle Dynamics.

Dissipative particle dynamics (DPD) has become a powerful and popular method to
perform meso-scale simulations. DPD represents an intermediate position between all-
atom molecular dynamics (MD) and Navier-Stokes equations. As its name suggests,
DPD is particle based. Its computational cost scales linearly with the number of
particles if the DPD algorithm is properly implemented, and hence very large systems
can be simulated. The method can be used in complex-geometry domains. On a
mathematical level, DPD predicts the behaviour of systems consisting of particles
which are interacting through a combination of conservative, dissipative and fluctuation
forces. Newton's laws are thus observed. Moreover, DPD can give an accurate

prediction of hydrodynamic behaviour.

Despite its advantages, DPD has certain practical problems. Commonly used
integration schemes in DPD lead to distinct deviations from the true equilibrium
behaviour, including deviations from the temperature predicted by the fluctuation-
dissipation theorem. None of the existing numerical implementations of DPD can
reproduce correctly the simulation temperature under the full DPD dynamics. Thus,
increases in the time-step used lead to a higher temperature and changes in all the
thermodynamic properties dependent on temperature. Since the fluctuation-dissipation
terms in DPD can be comparable to the conservative contributions, the non-
preservation of thermodynamic equilibrium properties poses a serious obstacle for

practical simulations.



10

15

20

25

30

A similar problem arises in classical molecular simulations when performing
simulations under constant temperature.

Specifying the temperature in molecular dynamics (MD) simulations for example,
involves a thermostat that represents the coupling of the molecular degrees of freedom
to a “heatbath”. Thermostats can be categorized as either local or global. The
simplest local thermostat is provided by Andersen’s thermostat (Andersen, 1980), while

the most common global thermostat is the Nosé-Hoover thermostat (Hoover, 1985).

From a physical point of view the local approach seems more realistic since it avoids a
global coupling of all molecular degrees of freedom through extended “heatbath”
variables. Rigorous constant-temperature sampling methods have been devised in the
context of Monte Carlo methods, and a thermodynamically consistent implementation
(i.e. free of numerical time-stepping artifacts) of Andersen’s thermostat is provided by
the hybrid Monte Carlo (HMC) method (Duane et al., 1987) and the generalized hybrid
Monte Carlo (GHMC) method (Kennedy & Pendleton, 2001).

These methods are based on a hybrid of two long-established molecular simulation
methods, molecular dynamics (MD) and Monte Carlo (MC). In MD, particles interact
deterministically over a time period under known laws of physics whereas in MC
conformations are accepted (or rejected) with a probability governed by a so-called

Metropolis test involving positions and momenta.

The computational efficiency of HMC has been improved through the work of Izaguirre
and co-workers (lzaguire & Hampton, 2004; Sweet et al., 2006).  Similar
improvements have been achieved for the GHMC method by Akhmatskaya & Reich
(2006, 2008), which have led to the generalized shadow hybrid Monte Carlo (GSHMC)
method (Akhmatskaya & Reich, 2008).

In GSHMC the acceptance rate of the dynamics part of the GHMC is improved through
the use of modified energies in the Metropolis test. The GSHMC method allows for
efficient sampling of phase space for large molecular systems and can be used as a

powerful simulation tool in a wide range of applications. It outperforms other popular
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simulation techniques such as classical MD and the standard hybrid MC in terms of
sampling efficiency.

Even though these molecular simulation methods provide thermodynamically
consistent implementations of constant-temperature molecular dynamics, they are not
suitable for meso-scale simulations since the fluctuation-dissipation contributions are
not applied in a dynamically consistent manner. The reason for this is that the
momentum refreshment step of GHMC/GSHMC does not respect the Galilean
invariance (Newton’s third law) of the underlying force fields. Galilean invariance is a
principle of relativity which states that the fundamental laws of physics are the same in
all inertial frames. Galilean invariance is one of the key requirements for simulation
methods adopted in meso-scale modelling, because the collective motion of the
particles at this scale is more important, so that it is the co-operative nature of the

simulated system which requires modelling.

Most local thermostats do not respect the Galilean invariance of the molecular force
field, which implies conservation of total and angular momentum. This limitation has
been overcome by the Lowe-Peters-Andersen thermostat (Lowe, 1999; Peters, 2004).
It has also been found (Koopman & Lowe, 2006) that the Lowe-Peters-Andersen
thermostat reduces the artificially induced viscosity compared to the Andersen
thermostat at equal collision rates, which implies faster diffusion of particles in phase
space. However, the Lowe-Peters-Andersen method cannot reproduce correctly

thermodynamic quantities independently of time step in MD under DPD.

It is desirable to overcome the disadvantages of the prior art, particularly in the coarse-

grain and meso-scale simulation areas.

The invention is defined in the independent claims, to which reference should now be

made. Advantageous embodiments are set out in the sub claims.

According to invention embodiments, there is provided a method of simulating
behaviour of a thermodynamic system over time, comprising a momentum refreshment
process and a conservative dynamics process, wherein the momentum refreshment

process comprises:
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given a starting position r and a starting momentum p of the model, partially
refreshing the momentum to define refreshed momentum p’ by considering solutions
for p> determined by a numerical implementation for integrating a generating linear
differential equation.

dp K
= = —;vrhk(r)ék,
déy,

—_— _— . -1 =
ds V,hk(r) M P, k 1,...,K,

where
Ve  is the gradient of 2k (T),

hk(r) is a selected Galilean-invariant, position-dependent function

& ~ N(0,p1), K< 3N £=(6.. &),

can be chosen arbitrarily;
N is the number of particles,

N (0, p!) denotes the normal distribution with zero mean and variance of -1,
B=1/KgT where T is temperature

0<s<w?2,and

M is the mass matrix

To seek solutions for given initial conditions

pO) =p =p, &0)=& =N(0,871),k=1.. . K

and using the starting momentum p or refreshed momentum p’ as the resulting
momentum p and using the starting position r as the resulting position r.

In one preferred embodiment the first step in the method is the momentum refreshment
step. It can give faster convergence to start the method with this momentum
refreshment step rather than the conservative dynamics iterations. The entire method
may be repeated a selected number of times or until a preferred result in terms of

system energy or stability is achieved.
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One particular preferred embodiment includes the introduction of a multiple momentum
refreshment step, which repeats the entire momentum refreshment step a selected
number of times consecutively to provide a final resulting momentum. The multiple
step effectively chooses the best option for the selected number of momentum
refreshment steps. This simple modification to the method allows improvement of the
acceptance rate in a subsequent Metropolis function and at relatively low cost in terms

of processing power and/or time.

In another embodiment the generating linear differential equation is solved using the
implicit mid-point rule. This has the advantage for some situations that the refreshed
momentum can be accepted automatically without a Metropolis acceptance step. This
advantage is not however available where the method uses a shadow Hamiltonian

rather than a true Hamiltonian for reference system energy calculations.

In other preferred embodiments these shadow Hamiltonians are used to calculate
system energy as asymptotic expansions of the true Hamiltonian step-size Az. Here,
some re-weighting is needed for high accuracy. The shadow Hamiltonian is a more
sensitive indicator than the true Hamiltonian of drift in the energy caused by instability,
in that it can eliminate some of the noise in true Hamiltonian values. Nevertheless for
accurate results, re-weighting of the calculated properties of the system is needed at
the end of the method.

An additional strategy for increasing the acceptance rate of the momentum refreshment
step is to introduce an appropriate transformation in the momentum vector p using a
map that is invertible in the momentum vector p. Such a transformation is particularly
suitable for mitigating the lowered acceptance rate of the momentum refreshment step

which is a drawback of using shadow Hamiltonians.

As will be appreciated from the following detailed sections, one key distinction of
invention embodiments over the known/related art simulation methods is a newly
developed (local) momentum refreshment Monte Carlo step, which conserves the
Boltzmann velocity distribution as well as total linear and angular momentum.
Surprisingly, the present inventors have managed to create a link between DPD and
hybrid MC methods based on the GHMC/GSHMC methods and thus combine some of
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the advantageous aspects of both. Embodiments of the invention therefore increase
the possibilities for investigation of thermodynamic processes that involve the co-
operative nature of simulated systems and that are outside the time-scale and length-
scale ranges of atomistic methods.

Moreover, invention embodiments include the enhanced sampling abilities of the
GHMC/GSHMC methods, reproduce thermodynamic quantities independently of the
time step in MD and have the ability to control transport properties.

The Galilean invariance of the novel momentum refreshment Monte Carlo step is
important for non-equilibrium simulations on a meso-scale level where particles
represent collective molecular degrees of freedom (Espafiol, 1995). Thus meso-scale
material simulations are the primary application area for the novel GHMC method. For
that reason, embodiments of the new method are referred to herein as meso-GHMC or

meso-GSHMC, even if they can also be used in coarse-grain scale simulations.

Mesoscopic phenomena of so-called “soft matter” physics, embracing a diverse range
of systems including liquid crystals, colloids, and biomembranes, are typically not
accessible to traditional simulation techniques such as molecular dynamics (on the
microscopic level) or reaction-diffusion equations (on the macroscopic continuum
level). The development of appropriate mesoscopic model description has been a very
active area for research over the last decade. Most approaches rely on some form of
“coarse graining” from the microscopic atomic description of soft matter. The resulting
models can be roughly classified as either being particle-based (in which case particles
no longer present individual atoms) or kinetic density-based models (in which case we
obtain a continuum or lattice-based description). Meso-GHMC and meso-GSHMC wiill

be applicable to a wide range of particle-based meso-scale models (Espanol, 2003).

Constant temperature molecular dynamics simulations provide another potential
application area for meso-GHMC. In this context, it should be noted that the Andersen
thermostat (as well as the HMC and GHMC methods) induce a form of “artificial”
viscosity into the system, which reduces diffusion of particles in phase space, i.e., their
“exploration” of phase space (Frenkel & Smit, 2001). This artificial viscosity increases
with the collision frequency of the Andersen thermostat while, on the other hand, a high
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collision rate is desirable for keeping the system close to the target temperature.
These two conflicting issues need to be balanced in practice by an appropriate choice
of the collision frequency.

Numerical experiments (following Vattulainen et al., 2002) have been conducted to
confirm that embodiments of the invention using meso-GHMC as well as meso-
GSHMC methods reproduce thermodynamic quantities for constant number of
particles, constant volume, and constant temperature (NVT) ensemble. Deviations
from analytic values are only due to finite sample size statistical fluctuations, but do not

depend on discretization parameters such as time-step and collision frequency.

The related art and preferred features of invention embodiments will now be described
by way of example, with reference to the accompanying drawings, in which:-

Figure 1 is a graph comparing different modelling methods;

Figure 2 is a schematic diagram of meso-scale modelling techniques;

Figure 3 shows a radial distribution function g(rir;) for different values of the step-size
At in model A;

Figure 4 shows (r/r;) (g(rir;) — 1) for the different step-sizes and methods to distinguish
statistically from numerically induced deviations of g(riry),

Figure 5 shows the radial distribution function g(rir) for different values of the step-size
At in model C;

Figure 6 shows the numerically observed temperature (kpT) vs the step-size At in
Model C; and

Figure 7 shows the numerically observed temperature (kgT) vs the step-size At in
Model A.

2. SUMMARY OF THE GENERALIZED HYBRID MONTE CARLO (GHMC) METHOD

We describe the generalized hybrid Monte Carlo (GHMC) algorithm of Kennedy &
Pendleton (2001) for a Hamiltonian (energy function).

1 1
H(x,p) = §pTM’1p +V(r), M
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. . 3N
with position vector T € R*" and momentum vector P € RSN, N the number of

RaNxs

atoms, M e N the (diagonal) mass matrix, and V.R¥ =R e potential energy

function.
We begin by recalling that a Markov process will converge to some distribution of
configurations if it is constructed out of updates each of which has the desired

distribution as a fixed point, and which taken together are ergodic. The GHMC

algorithm for the generation of the canonical density function

p(r,p) o< exp(~BH(r,p)), with B=1/ksT, 2
is constructed out of two such steps (Kennedy & Pendleton, 2001).
2.1 Conservative Dynamic Step

Hamilton’s equations of motion

P=M'p, p=-V.V(), (3)

are numerically approximated with the leapfrog/Stérmer-Verlet method

t
pn+1/2 - pn . %VrV(I‘n), @)
= 4 AtM T pntY2, (5)
prl = prtl2 %V,V(r"’“) )

over L steps and step-size At The resulting map Uy : (r,p) — (r',p)), 7 = LAL
preserves volume and is time-reversible. Finally, a Metropolis accept/reject test of the
form

' p') = U.(r,p) with probability min(1,exp(-8 IH))
TPV= Y (r,—p) otherwise ’ (7)
with

OH = H(U,(r,p)) — H(r,p) (8)
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is applied.

Introducing momentum flip F:(r,p)— (r,—p) in (7) provides the validity of the
standard detailed balance condition

AT De M=AT(|ToT) (A)

which in turns verifies the stationarity of a probability density function (PDF) LAY
under a given Markov chain, i.e.:

M=| AT Dpe (Dl
o ()= [ AT | D)o (DT )

where the state space of a Markov chain, Q cR", consists of states '€ Q, and its
transition probability kernel is A(I'|T"). I’ are proposal states.

2.2 Momentum Refreshment Step

The momentum vector p is now mixed with a normal (Gaussian) i.i.d. distributed noise

vector Z € R* and the partial momentum refreshment step is given by

(2)-(50 = )(E) o
where

== 2%, t=(&,...,6n), &~N(0,1),i=1,...,3N (10)

and 0 < = /2 is an appropriate angle. Here N(0, 1) denotes the normal

distribution with zero mean and unit variance.

If p and E are both distributed according to the same normal (Gaussian) distribution,
then so are p' and Z’. The special property of Gaussian random variables under an
orthogonal transformation (9) makes it possible to conduct the partial momentum
refreshment step without a Metropolis accept/reject test. See Kennedy & Pendleton
(2001) for details.

2.3 A GHMC Method without Momentum Flip
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The present inventors have come to the realisation that it is possible to carry out a
GHMC simulation without the standard momentum flip.

For high rejection rates the momentum flp in GHMC leads to an undesirable
Zitterbewegung (going forward and backward) in the molecular trajectories. This has
been identified by Horowitz, 1991 as the main obstacle to achieve higher sampling
effiency under the GHMC method compared to the HMC method.

We should stress that a standard detailed balance relation (A) is stronger than (B) and
one might search for conditions alternative to (A) which still implies (B), i.e., implies the

stationarity of © (I under a given Markov chain, but eliminates the need for the

additional momentum flip in GHMC. Of particular interest to us are Markov chains that
allow for a map (involution) F:Q—Q, which satisfies (i) F =F"' and (i)

e D=2 FDforal TeQ.

In Gardiner “Handbook on Stochastic Methods”, 2004 one finds the following

detailed balance condition for systems satisfying an involution F':

AT |\Dp (D)= AFT|FT) o (FT) = AFT| FT)p (I ©)

in the context of the Fokker-Planck equation. Condition (C) implies (B) since
[ATIDp (D)dr=p ) AFT|FTT= 0 (@)

We now generalize the modified detailed balance relation (C) to Markov chain Monte
Carlo (MCMC) methods. This will of course apply to a GHMC method, which is a

MCMC method for systems of interacting particles with position 7 eR?, momentum
p, €R®, and mass m;, i =1,...,N . The phase space is Q=R® and the state variable

is given by

T T T T.T
1_'=(J=l,...,rN,p1,...,pN)

3

the involution (momentum flip) F' is provided by
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T T T T.T
FT=("1 ""rrNJ—pl""'pN)

’

the canonical distribution at temperature T is then given by (2) and an energy function

H is defined in (1). We obviously have o D=0 (FT').

Let T(I"|T") denote the proposal distribution of a MCMC method and let us assume

that the state space Q permits an involution F. A proposal state I" is accepted
according to the Metropolis-Hastings criterion r(I",[)>¢, where £€[0,1] is a

uniformly distributed random number and

s5T.T)
o OTT D)

(D)=
where §(I",I") is any function with
S(I'\I)=6(FT,FT")

that makes r(I",I) <1.

The probability for the induced Markov chain to make a transition from I to [ is now

given by
ATD =TT |DrID) = p @) 8.
Similarly,

A(FT|FTY) = T(FT|FTr(FT, AT
= p (FT)8(FT,FT)
e (Y8

and the modified detailed balance relation (C) follows.

One can choose, for example,

ST = min {p (OTT| Do TOT(FT| FTH}
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T(FT| FT 0 (r')J
T | De O )

AT, T") = min (1,

if the proposal distribution satisfies

T(",T) =TUT, FT),

then we obtain the simplier (Metropolis) formulation

", T)=min | 1,222 (F')J.
rED m’”[ P

2.4 Special Cases of GHMC

Several well-known algorithms are special cases of GHMC:

The usual hybrid Monte Carlo (HMC) algorithm is the special case where
a=m/2  The momentum reversal in case of a rejected conservative
dynamics part may be ignored in this case since p’ = E in (9) and the previous
value of p is entirely discarded.

Langevin Monte Carlo algorithms correspond to L = 1; ie., a single
conservative dynamics time-step with T = At, and an arbitrary
0<a<m/2 Langevin Monte Carlo recovers stochastic Langevin molecular
dynamics (Allen & Tildesley, 1987)

dr = M~pdt, dp=—[V.V(r)+yp|dt — odW, a1

— 1/2
provided = (QVAt) / , 7>0 is a constant, ¢ is determined by the
standard fluctuation-dissipation relation (Allen & Tildesley, 1987), and W is a
vector of independent Wiener processes. In this regime, we find that (9)

reduces to

p' —p~ —yAtp — (27AL)V7E, (12)
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provided that & < 1, and one may view the GHMC algorithm as a means to
simulate stochastic molecular dynamics (instead of using GHMC as a pure
sampling device).

The single conservative dynamics step (L = 1) may be replaced by a small number of

- 1/2
steps such that the resulting & = (2vLAt)Y still satisfies @ << 1 for a given 7.
3. DETAILS OF THE NEW MESO-GHMC METHOD

The inventors have proposed an extension of the GHMC method to position-dependent

momentum refreshment steps.

The new meso-GHMC can make use of a modified detailed balance relation (Gardiner,
2004) to eliminate the momentum flip in the conservative dynamics part of GHMC as
explained above. See Item (i) in the algorithmic summary of §3.2. However, it is also
possible to keep the conservative dynamics part as described in §2.1, so that the

momentum flip is retained.
3.1 Momentum Refreshment Step

The inventors have been able to realise that (9) can be viewed as the solution to the

linear differential equation

d_ o E_J (13)
ds o ds ’

-

at $ = O with initial conditions p(0) = p and E(0) = =. We call (13) the generating
differential equation for the momentum proposal (9). This equation, and its
generalisation shown below is close to the DPD equations set out in detail later in this
text and the inventors came to the realisation that such differential expressions can
form a link to DPD.

Alternative momentum proposal steps can be now be devised by different choices of
the generating differential equation. One can, for example, use the more general

formulation
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dp d=
x _-_B = — BTp! 14
s €, s B*M™'p, (14)

with

£(0) =€ = (&, &n)T, & ~N(0,8 1) fori =1,...,3N, and B € R¥*3N

an arbitrary matrix. The important features of (14) are the following:
10
(@) The linear system (14) is Hamiltonian with Hamiltonian function

1 (15)
H= 2 (pTM'p +£7¢)

and skew-symmetric structure matrix

_ | Osv =B (16)
15 7= [ B Oaw ]
(Leimkuhler & Reich, 2005).

(b) The solutions of (14) are time-reversible (Leimkuhler & Reich, 2005).

20 (c) The solutions of (14) conserve the canonical distribution

P(P,f) X exXp (~€_ {pTM—lp + £T€}> ' (17)

Based on the formulation (14), the inventors use the linear differential equation
(18)
ds

Lr . Yoh(r) - M~'p, k=1,... K,
ds (19)

dp K
— = = Veh(r)&,
k=1

25
for the meso-GHMC method. Thus integration, or a numerical approximation of

integration, is required to solve the equations and calculate the refreshed momentum.
Here the position-dependent functions hi can be chosen arbitrarily. If, however, the

functions {he} are chosen to be Galilean invariant (i.e., invariant under translations
30 and rotations of the coordinate system), then (18)-(19) conserve total linear and
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angular momentum and become suitable for meso-scale simulations. Specific choices

for {he} will be discussed in §4 in the context of dissipative particle dynamics.

To obtain a partial momentum refreshment step, we seek the solutions at § = & for

given initial conditions

p0)=p°=p, &0O)=&=N(0,7), k=1,... K (20)

Let us denote the linear solution operator, generated by the solutions of (18)-(19), by

3N +K)x(3N+K
R(s) e RGN+ IX(@N+ ). The solution operator R(s),0<s< & has the

following properties:
(a) The solutions of (18)-(19) are volume conserving, i.e., det R(s) = 1.

(b) Given a fixed position vector r, the solutions of (18)-(19) are time reversible,
ie. FR(s)F = R(—s) Here F denotes the linear involution operator that
changes the sign of all e k=1,..., K

(c) The solutions of (18)~(19) conserve the extended Hamiltonian/energy

L

Hea(r, P, {61) =

T 1 o 1
p’M7'p+V(r)+ 3 ;fi =MH(r,p) + ‘2‘§Tf 1)

for r = const.

(d) Property (c) immediately implies that the solutions of (18)-(19) conserve the
extended canonical distribution

Pext OC EXP (—’ﬁHext.) ) (22)

i.e.,

K K
exp (—ﬁH(r, p() -8/23 €k(0)2> = exp (—ﬁﬂ(r,ms» —6/23 sk<s>2>
(23)

k=1 k=1

or, in more compact notation, et © R(s) = pext.
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We now consider the numerical implementation of (18)-(19). To do so we follow the
standard hybrid Monte Carlo (HMC) methodology (Duane et al., 1987, Mehlig et al.,

1992), integrating (18) and (19) and considering time-reversible and volume conserving

(simplectic) propogators for the dynamics in p and {&} with fixed position vector r.
Two such methods will be considered: (i) an explicit one, which does not conserve (21),

and (ii) an implicit one, which does conserve (21).
3.1.1 Stormer-Verlet Method

A first choice is provided by the application of the Stérmer-Verlet method (see, e.g.,
Leimkuhler & Reich (2005)) to (18)-(19) and we obtain

K
P2 i %_S_ AN (24)
k=1
G = g+ AsVehi(n) - MR, k=1, K, (25)
K
pitt = piti2_ % Zvrhk(r)€i+l~ (26)
k=1

The numerical propagator (24)-(26) is applied over J > 1 steps with step-size

o
As =oafJ and initial conditions (20). The final result, denoted by P =P and

A —
& = ko k=1,...,K, is accepted with probability

Pt (T, P, {EL})) (27)
’ pext(r:pa {ﬁk}) .

Paccept = min (1

In case of rejection, we continue with the initial p. In line with the standard HMC

!
method, the {‘fk} are entirely discarded after each completed momentum update

step.

Note that Pacpt — 1 28 As — 0. This follows from the convergence of the
numerical propagator to the exact R(a) as As — 0, Hence, as a rule of thumb,
we suggest to pick J large enough such that the rejection rate in (27) becomes

negligible (e.g., less than 1%) for given &.
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3.1.2 Implicit Midpoint Rule

An alternative propagator is obtained by applying the implicit midpoint rule (see, e.g.
Leimkuhler & Reich (2005)) to (18)-(19) to obtain

, o , (28)
Pl = P g ) Vel + ),
6;1: = gk‘*—%vrhk(r)'M—l(p,'i"p)) k=1,,K (29)

The resulting linear equations in (', {&:) can be solved by a simple fixed point
iteration or some other iterative solver. The implicit midpoint rule is not commonly
used, but the inventors have found an appealing aspect of its implementation (28)-(29)
in that it conserves the extended energy (21) exactly and, hence, also the

corresponding canonical distribution function (22). Since the method also conserves

’
volume and is time-reversible, the proposed momenta P are always accepted while

! —_
the variables §k> k=1,.. ‘7K v are entirely discarded after each momentum
refreshment step. Thus for this preferred way of solving (18) and (19), no Metropolis

acceptance step is necessary.

Because of the necessary fixed point iteration, the implicit midpoint method (28)-(29) is
more expensive than the Stérmer-Verlet method (24)-(26). However, we nevertheless

recommend the implicit midpoint method for use in meso-GHMC because of the ideal

acceptance probability Paccept =1,

3.2 Algorithmic Summary of a Preferred Embodiment

The meso-GHMC method is defined through a Hamiltonian (1), inverse temperature

K
B =1/ kBT", a set of position-dependent functions {hk(r)}k=1, time-step At,
number of time-steps L, and parameter & for the momentum refreshment step. The

method generates a sequence of position and momentum  vectors
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(t;,pi),3=1,--.,J We now summarize a single iteration of a preferred meso-
GHMC method.

(i)

(ii)

(iii)

Conservative dynamics process. Given the last accepted pair of position

and momentum vectors ("j:pj), we numerically integrate the Hamiltonian

equations of motion (3) over L time-steps with the Stérmer-Verlet method,
0 _ 0 _
(4)-(6), step-size O, and initial conditons T = Ti» P° = Pi_ This

results in the approximation ’ . The accepted pair of position and
momentum vectors (r, p) is obtained via a Metropolis accept/reject test of

the form

(t.p) = (rf,p¥) with probability min(l,exp(—8JH))
'P) = (r;,p;) otherwise ’ 30)

where

SH = H{Y, p*) — H(rj, pj)- (31)

Momentum refreshment process. A sequence of i.id. random numbers

~ -1 = ..

& ~ N0, 671, k =1,.. K, is generated. Using the implicit

midpoint rule implementation of the momentum refreshment step, the
/ !

system (28)-(29) is solved for (P, {&k}) by a fixed point iteration.

Alternatively, the Stormer-Verlet method or another suitable method may be
used in which case a Metropolis acceptance step is required.

The newly accepted pair of position and momentum vectors is provided by

_ — !
Tj+1 =T (from the conservative dynamics part) and Pi+1 = P (from the

momentum refreshment step), respectively.

We note that the conservative dynamics step is first in this example, but the momentum

refreshment step could equally be first and/or could moreover be repeated before

progressing to the conservative dynamics step (if the solution to (18) (19) is not

obtained using the implicit midpoint method).
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Under the assumption of ergodicity of the induced Markov chain, the ensemble

average of an observable Qr, p) with respect to the canonical ensemble (2) is
approximated as
1 J
(=500, p)).

=1 (32)

The Metropolis criterion (30) needs to be replaced by

(r.p) = (rf,p%) with probability min(1,exp(—8dH)) (33)
P} = (rj, —p;) otherwise

in case the conservative dynamics part is to be conducted with a momentum flip. No

other parts of the algorithm need to be modified.

We emphasize again that both (30) as well as (33) lead to a Monte Carlo method
satisfying a detailed balance relation with respect to the canonical density function.

4. DISSIPATIVE PARTICLE DYNAMICS (DPD) AND METROPOLIS ADJUSTED
DPD (MetADPD)

Dissipative particle dynamics (DPD) has become a very popular method for meso-
scale simulations of materials. In this section, we provide a short summary of the
method and discuss its link to the meso-GHMC method. The discussion will result in a
new DPD Monte Carlo method, which we call Metropolis adjusted DPD (MetADPD).

4.1 Summary of DPD
Following the notation of Espafiol & Warren (1995), the standard DPD method of

Hoogerbrugge & Koelman (1992) can be formulated as a stochastic differential
equation (SDE):

dr; = Pige, (34)
i (35)
dp,' = F,‘ - Z U)(T‘,’j) (eij . v,',v)ei,v dt+o Z wl/z(r,-j)eide,-,-,

G J#i
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where ™ is the mass of particle i with position vector

r; = (mi)yi,zi)T, ryj =Ty —Tj, Ty =|r; —rj|, e = /i, Vij = Vi =V, Vi = pi/mi,
F; = -—-VHV([') . . . . . . .

and is the conservative force acting on particle i. The dimensionless

weight function w(r) can be chosen in a rather arbitrary manner. However, to

reproduce the constant temperature macro-canonical ensemble, the friction coefficient

Y and the noise amplitude ¢ have to satisfy the fluctuation dissipation relation

o = +/2kgT". (36)

Finally, Wi(t) = Wx() are independent Wiener processes. Recall that the finite-
time increments AW3(r) = Wit +7) — Wi(t) of a Wiener process are
VT, le, AW(T) ~ N(O,T)‘

Gaussian distributed with mean zero and variance

Following Cotter & Reich (2003), let us write the equations (34)-(35) in a more compact

and general manner:

(37)
dr = M 'pdt,
X . (38)
dp = —-V.V(r)dt— Z V. hi(r) [’yhk(r) dt + ade] ,
k=1

where r is the collection of the N particle position vectors Tis P s the associated

— -1 ,
momentum vector, M is the diagonal mass matrix, ¥ = M~'p, V(r) is the potential

energy,
hi(r) = Vehi(r) - v = Veh(r) - M7 'p, (39)
and the functions hi(r), k = 1,..., K, can be chosen quite arbitrarily.
The choice
hi(r) = ¢(ri;), & (r) = w'/3(r), k=1,.. ,K, (40)

With K = (N — 1)N/2 in (38) leads back to the standard DPD model. However, one can
also set K= 3N and

1/2 (41)

/zyi, hiyon(r) = m;’ 2,

hi(r) =mi?z;,  hin() =m;
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i=1,.., N, in (38), which leads to the standard Langevin model (11). Yet another
variant of (38) is obtained in the context of the Hamiltonian particle mesh (HPM)
method (Frank & Reich, 2003; Frank et al., 2002), which itself is an application of the
classical particle-in-cell (PIC) or particle-mesh methods (Hockney & Eastwood, 1988;
Birdsall & Langdon, 1981) to geophysical fluid dynamics (GFD) (Saimon, 1999). Here

the functions hi(r) would refer to some cell averaged quantity and k would be its cell
index, where the cells are equivalent to the particles referred to previously. For

example, the fluid density at a grid point Xk can be approximated by

N
ha(r) =Y mab(jxx — ), (42)

i=1
with ¥(r) some proper shape function such as a tensor product cubic B-spline. We
finally mention an application to molecular dynamics (MD) suggested by Ma & lzaguirre
(2003). Here the stochastic part of the dynamics is used to stabalize long-time step

methods and the functions R correspond to entries in the MD potential energy
function. For example, if one would like to stabilize a bond stretching mode between

hy(r) = ri — 15|

atoms j and j, then
4.2 Time-stepping Methods for DPD

The optimal numerical treatment of the DPD equations is still a subject of debate. See,
for example, the publications (Pagonabarranga et al., 1998; Besold et al., 2000;
Shardlow, 2003; Vattulainen et al., 2002; Peters, 2004, Hafskjold et al., 2004;
Koopman & Lowe, 2006). In particular, it is found that the numerically observed

temperature T depends on the step-size At and differs from the target temperature

T. Methods are now available that to ™" =T in the absence of conservative forces

(Peters, 2004; Koopman & Lowe, 2006). However, none of the existing methods leads

to T" = T ynder the full DPD dynamics.
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4.3 A DPD Monte Carlo algorithm: Metropolis Adjusted DPD

We now discuss the connection between the newly proposed meso-GHMC method
and DPD. Similar to the already discussed Langevin Monte Carlo algorithms (see
§2.4), one can derive a DPD Monte Carlo algorithm from the meso-GHMC method by
setting L = 1 in the conservative dynamics part of the meso-GHMC. We also set

_ 1/2
a = (27At)Y?, v >0 the friction constant of DPD, in the momentum refreshment
step and find that (28)-(29) reduce to

K
p =~ - Vehe(r) [YAtVehi(r) - M7'p + (29A02&] , v/ — 1 = 0 (43)

k=1

to leading order in the step-size AL,

Hence we may view the algorithm of §3.2 with L = 1 as a splitting method (i.e., into the
conservative dynamics part and the fluctuation-dissipation part, respectively) for (37)-
(38) put into the framework of Monte Carlo methods. The resulting DPD Monte Carlo
algorithm preserves the target temperature T and the associated canonical distribution

(2) exactly. Furthermore, linear and angular momentum are conserved under suitable

choices of the functions {hk(r)} We call the resulting Monte Carlo method the
Metropolis adjusted DPD (MetADPD). This MetADPD is equivalent to meso-GHMC or
meso-GSHMC (which is considered below), with L = 1 and some truncation, as

explained above. Therefore the corresponding considerations and advantages apply.

5. EXTENSION TO GENERALIZED SHADOW HYBRID MONTE CARLO METHOD:
THE NEW MESO-GSHMC METHOD

The key idea of the generalized shadow hybrid Monte Carlo (GSHMC) method of
Akhmatskaya & Reich (2008) is to assess the Monte Carlo steps of GHMC with

regards to a shadow Hamiltonian Ha (a high order approximation of a Hamiltonian),
which increases the acceptance rate in the conservative dynamics part of GHMC. See
Akhmatskaya & Reich (2006, 2008) for appropriate choice of the shadow Hamiltonian.
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We now outline the generalization of meso-GHMC to GSHMC. We will call the
resulting method meso-GSHMC. Again the momentum flip in the conservative
dynamics part of GHMC can be eliminated based on the theoretical results of Gardiner,
2004. However, we also emphasise the conservative dynamics step of the original
GSHMC method could be maintained if desired.

We now describe the modified momentum refreshment step.
5.1 Momentum Refreshment Step

To put the meso-GHMC method in the context of the GSHMC method of Akhmatskaya
& Reich (2008), we need to modify the partial momentum update step, for example as
defined by (28)-(29) (in case of the implicit midpoint implementation). The key idea is
to replace the extended canonical density (22) by

plr,p,{&k}) = exp ( —BHas(r,p) ﬁ/?Z§k> (44)
and the acceptance probability (27) by

Paccept =

( plr, P>{fk})) (45)
b\(r P, {ék})

Note that Faccept = 1 for the implicit midpoint implementations (28)-(29) and Har =H.

However, this is no longer the case for Ha: # H. This is a drawback of GSHMC,
which can be partially overcome by GS2HMC (Akhmatskaya & Reich, 2008). In our

context, this implies that the initial conditions p° in (20) gets replaced by

p? = ¥(r,p, At)

and P’ is now defined implicitly by
J = W(r,p', At) (47)
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where \1;(1-’ % At) is an appropriate transformation in the momentum vector p (Sweet

et al., 2006; Akhmatskaya & Reich, 2008). An additional constraint on the choice of i
is angular and linear momentum conservation under the resulting momentum
refreshment step.

Since the meso-GSHMC method samples with respect to a modified canonical

ensemble, it is necessary to reweight the computed samples {9} of an observable

Q = Qr,p), see Akhmatskaya & Reich (2006, 2008) for details.
5.2 Algorithmic Summary of a Preferred Embodiment

The meso-GSHMC method is defined through a Hamiltonian (1), a shadow Hamiltonian
Hat, inverse temperature B = 1/ kBT, a set of position-dependent functions

K

{hk(r)}k=1, time-step At, number of time-steps L, and parameter (¢ for the
momentum refreshment step. The method generates a sequence of position and
momentum vectors (rj , pj), j =1, .., J. We now summarize a single iteration of the

meso-GSHMC method.

(iy Conservative dynamics process. Given the last accepted pair of position and
momentum vectors (rj , pj), we numerically integrate the Hamiltonian equations of

motion (3) over L time-steps with the Stérmer-Verlet method, (4)-(6), step-size At and
initial conditions r° = r pO =p; This results in the approximation (rL, pL). The accepted

pair of position and momentum vectors (r, p) is obtained via the Metropolis

accept/reject test

L L . a1 . _ 7
(r,p) ={ (vf,pl) with probability min(1,exp(—8H)) , “8)

(rj, p;) otherwise
where

oH = ﬁAt(rLa pL) - ﬁAt(rj, pj)- (49)
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(i)  Momentum refreshment process. A sequence of iid. random numbers
~ -1 = .

& ~N(0,677),k=1,...,K, is generated and using the implicit midpoint rule

implementation of the momentum refreshment step, the system (28)-(29) is solved for
/ !

(p >{§k} ) by a fixed point iteration. The accepted momentum vector p” is obtained via

= { p’ with probability min(1,exp(—8dHux))
p otherwise (50)

where

~ ~ 1 X ~ 1 K (51)
SHext = HAt(r,PI) + 525; — | Ha(r,p) + 2 ka .
k=1 k=1

(i) The newly accepted pair of position and momentum vectors is provided by r;,, =r
(from the conservative dynamics part) and p;,; = p” (from the momentum refreshment

step), respectively.

As before, the iterations could start with the momentum refreshment step or the
conservative dynamics step and/or the refreshment step could be repeated a preferred

number of times before the conservative dynamics step.

A Metropolis acceptance step may also be appropriate for the implicit midpoint method,
because in meso-GSHMC, there is a deviation from the ideal acceptance probability

Paceept = 1, caused by the truncation.

Under the assumption of ergodicity of the induced Markov chain, the ensemble

average of an observable r,p) with respect to the canonical ensemble (2) is
approximated as

1

J 2j=1 'ij(I'j, p.?) (52)

J
'} 2j=1 Wj

) =

where

w; = exp (ﬁ [ﬁAt(I'japj) ~ H(x; ’p")D ' (53)
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In case the conservative dynamics part is run with a momentum flip, the Metropolis
criterion (48) needs to be replaced by
(rp) = { (r¥,p*) with probability mirn[.l,cxp(_wﬁé'ﬁ)) .

(l',‘;l)j) otherwise

(54)
No other parts of the algorithm need to be modified.

6. NUMERICAL EXPERIMENTS

The numerical experiments are conducted for Model A and Model C of Vattulainen et
al. (2002) because these models are well-defined and depict different situations.

Numerical results from the meso-GHMC/GSHMC methods are compared to the MD-VV
implementation (Vettulainen et al., 2002) of DPD (for simplicity of presentation, we start

with half a time-step in the positions:

At (55)
qﬂ+1/2 — qn+_2_M lpn’
pn+1 — pn—AtVrV(I'"+1/2) (56)
K
= 3 Vehi(r" ) [y ALV R (f42) - MTp” + (27AD)Y2&]
k=1
(57)

At
qn+1 — qn+1/2+_§_M lpn+1’

where &k~ N(,67Y), k=1,..., K zrejid. random numbers.
6.1 Model Systems
We first summarize the two model systems. See Vattulainen et al. (2002) for more

details; the relevant parts of this paper are incorporated by reference.

6.1.1 Model A
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We consider a total of N = 4000 particles with mass m = 1 in a cubic domain of size
10x10x10 with periodic boundary conditions. The conservative forces are set equal to
zero, i.e., the Hamiltonian (1) reduces to

1
= -—pr (58)
2
and the resulting equations of motion can be solved exactly. Hence we formally use

Ha: = H. as a modified energy for meso-GSHMC and it is sufficient to only implement
meso-GHMC for Model A. We always set L = 1 in the conservative synamics part of

meso-GHMC, ie., T = At and perform experiments for different values of the step-

size At.

The functions {hr(r)} for the momentum refreshment step are defined via

vn [ 1=r[r, forr<r,
¢(r) = { 0, for r > 7. (59)

— 1/2
in (40). The cutoff distance is set to equal r. = 1. We also use a = (2vAt) / for all

Monte Carlo simulations with Y =45

The reference experiments with the DPD method (55)-(57) use the same parameter

settings.
6.1.2 Model C
Model C is a simple interacting Lennard-Jones fluid with truncated pairwise interaction

U =4 [(;i?yz - (;%)6] » T ST (60)

0, Tij; > Tey

potential

with r,= 1 and / = 216, The simulation box is of size 16x16x16 with a total of N = 2867

particles. This corresponds to a density of P =07
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The conservative dynamics part is implemented with 7 = 0.05 and varying values for
At and, hence L = T /At,

The momentum refreshment step is implemented as for Model A with the only

difference being that & = (2y7) 12 ~ 4.4721 for all Monte Carlo simulations with
=200 (7 = 20, respectively).

The meso-GSHMC method is implemented with a fourth-order accurate shadow

Hamiltonian as ﬁAt. See Akhmatskaya & Reich (2006) for a formulation of the
shadow Hamiltonian. Note, however, that the truncated interaction potential (60) leads
to a continuous only force field. Higher regularity of the force fields is required to
achieve a fourth-order accuracy in the shadow Hamiltonian. The fourth-order behavior
is indeed not observed in our numerical experiments. See Hafskjold et al. (2004) for

the use of smoother truncation schemes in the context of DPD.

The reference experiments with the DPD method (55)-(57) use the same parameter

settings.
6.2 Numerical Results

We now discuss the numerical findings. We emphasize that all Monte Carlo

simulations were conducted with a momentum flip in the conservative dynamics part.
6.2.1 Model A

The numerical results from the meso-GHMC and traditional DPD simulations can be

found in Figs. 3-5.

Figure 3 shows a radial distribution function g(rir) for different values of the step-size
At in model A. The analytic value is g(r/r;) = 1. Numerical results are obtained from a

standard DPD integration scheme and the newly proposed meso-GHMC/GSHMC

method for different values of the step-size At,
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In Figure 4 we also provide (rir.) (g(rir;) — 1) for the different step-sizes and methods to

distinguish statistically from numerically induced deviations of g(r/r,).

Following the arguments of Peters (2004), Fig. 4 thus demonstrates that the deviations
of the numerically computed radial distribution function g(r/r,) from its exact value g = 1
is of purely statistical origin (finite sample size) for the meso-GHMC method. The
same does not hold for the DPD method unless At < 0.05. We also note that the

meso-GHMC method exactly reproduces the target inverse temperature B =1 for all
values of At, while the DPD method (55)-(57) leads to a nearly linear increase in the

numerically observed temperature with respect to the step-size At

(kpT)

Figure 5 shows the numerically observed temperature vs the step-size A% in

Model A. Results are obtained from a standard DPD integration scheme and the newly

proposed meso-GHMC/GSHMC method. The correct result is {ksT) - 1.
6.2.2 Model C

Figure 6 shows the radial distribution function g(r/r,) for different values of the step-size

At in model C. Results are obtained from a standard DPD integration scheme and the
newly proposed meso-GHMC/GSHMC methods.

We conclude from Fig. 6 that the computed radial distribution functions are in nearly
perfect agreement for all simulation methods and step-sizes At. Note, however, that
Vattulainen et al. (2002) do not specify the number of particles for Model C and, hence,

our numerical results may differ slightly from the findings in Vattulainen et al. (2002).

(kpT)

Figure 7 shows the numerically observed temperature vs the step-size At in

Model C. Results are obtained from a standard DPD integration scheme and the newly

proposed meso-GHMC/GSHMC methods. The correct result is (ksT) - 1.
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We therefore confirm in Fig. 7 that the Monte Carlo methods exactly reproduce the

target inverse temperature B =1,

We finally state the rejection rates for meso-GHMC and meso-GSHMC in Table 1
below. The meso-GSHMC slightly reduces the rejection rate in the conservative
dynamics part. This is at the expense of a non-zero rejection rate in the momentum
refreshment step. It appears that the meso-GHMC method is optimal for force fields
with a non-smooth cut-off. A smooth truncation of the force field has been discussed
by Hafskjold et al. (2004) in the context of DPD.

method step-size | rejection rate in CD step rejection rate in MR step
meso-GHMC 0.0025 1.65% 0%
meso-GSHMC | 0.0025 1.28% 0.11%
meso-GHMC 0.0100 26.51% 0%
meso-GSHMC | 0.0100 20.64% 1.64%

Table 1: Rejection rates in the conservative dynamics (CD) and momentum
refreshment (MR) steps of meso-GHMC and meso-GSHMC, respectively, for different

values of the step-size At and constant 7 = LAt =0.05,
7. SUMMARY

We have described embodiments which include an extension of the GHMC/GSHMC
method to a momentum refreshment step which respects the Galilean invariance of the
underlying conservative dynamics. It has been demonstrated that these embodiments
(referred to as meso-GHMC and meso-GSHMC) reproduce thermodynamic quantities
correctly and independently of the step-size At for the conservative dynamics part.
This is in contrast to standard stochastic dynamics implementations of DPD. The
Galilean invariance of the momentum refreshment step is important for non-equilibrium
computations (conservation of linear and angular momentum) and for sampling

(reduced artificial viscosity).
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Below we outline possible implementations of invention embodiments referred to as
meso-GHMC/meso-GSHMC in the context of massively parallel computing facilities
and potential application areas within meso-scale simulation tools.

7.1 Parallel Implementations of GSHMC/meso-GSHMC

There are at least four immediate strategies to put Monte-Carlo methods such as
meso-GHMC/meso-GSHMC into the context of massively parallel computing. The first
is to use massively parallel implementations of the necessary force field calculations.
This is easy to achieve whenever the force field is short-range (as is often the case for
DPD). More sophisticated strategies are required for long-range interactions (such as
electrostatics). See, for example, the fast multiple algorithms of Greengard & Rokhlin
(1987). The second application arises when Monte Carlo chains are conducted in
parallel and independently. The final two strategies arise as refinements of this “trivial”
(but often very useful) exploitation of parallelism. We describe them in some detail
next. We wish to emphasize that these four strategies can be combined within a single

implementation to produce multi-level parallel algorithms.
7.1.1 Parallel Tempering/Replica Exchange

in parallel tempering (see, for example, Liu (2001)), the target distribution is embedded
into a larger system which hosts a number of similar distributions differing from each
other only in temperature parameters. In our context, the obvious choice is to consider

a family of canonical distributions
ps x exp(—B;H), (61)

where Bi = 1/ksT;, Ti 5 sequence of temperature with target temperature T =T,
for an appropriate index i+ and H is the Hamiltonian. Then, parallel GHMC/GSHMC

are conducted to sample from these distributions P¢ independently. These multiple
distributions are connected by proposing an occasional configuration exchange
between two adjacent (in temperature) sampling Monte Carlo chains. Parallel
tempering allows “large” configurational moves at “high” temperature, which can get
inserted into lower temperature ensembles via exchange steps. However, to allow a
sufficient number of successful exchanges between adjacent densities, the densities
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must overlap strongly. See Liu (2001) for more details and Brenner et al. (2007) for
recent improvements of the method in the context of molecular dynamics.

Note that temperature T could be replaced by another parameter in a parallel
tempering method. Hence parallel tempering could also be used for free energy
calculations within the thermodynamic integration framework.

7.1.2 Orientational Bias Monte Carlo

We finally mention the orientational bias Monte Carlo (OBMC) (or multiple-try
Metropolis) method as a means to enhance the acceptance rate in the momentum
refreshment of shadow hybrid Monte Carlo methods. The OBMC method provides a
rigorous means to exploit multiple (parallel) proposals within a Monte Carlo context.
See Liu (2001) for a description of the OBMC method.

The basic idea (put into the context of GSHMC) is to generate k trial momentum
vectors Pés i=1,...,k given a momentum vector p. Select P=P among the
momentum vectors {P:} with probability m(ps) proportional to the target distribution,
ie., T(pi) eXp(—ﬁﬁm). Next we generate another k — 1 reference points {B:}

using the momentum proposal step with P as the initial value. Set br = P Finally

accept P with probability

min {1, -E—%ﬂ(—l-)—)—} (62)
> ie1 (D)

and reject with the remaining probability.

7.2 Meso-scale Applications
7.2.1 Particle-based Meso-scale Models

Particle-based meso-scale models, suitable for meso-GHMC/GSHMC, can be found in

a wide range of application areas including colloid-polymer systems, membranes and
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micro/nano channels, dynamic wetting, and liposome formation. Bionanotechnology is
a particularly important area of application and covers, for example, drug delivery and
therapeutics (including nanoscale assembly of liposomes and dendriners, and
cholesterol removal); screening using membrane simulation; and bioanalysis (including
nanoparticle transport and microfluids to nanofluids). Another area of application is soft
nanotechnology, the design and application of soft materials with nanoscale structures.
Soft particles such as surfactants, block copolymers and proteins can be studied to
predict the self assembly structures from nanometres to microns in size. Such
simulations are of use in the food, oil, paint and cosmetic industries. Meso-
GHMC/GSHMC is amenable to massively parallel computing and can contribute to
solving many important environmental problems such as local weather forecasting,
global climate predictions, nuclear waste remediation. The invention embodiments
also have use in permeation and separation of toxic solutes, developing

environmentally friendly new materials, and low-carbon energy generation.

7.2.2 Free Energy Calculations and Conformational Sampling

Besides meso-scale simulations, we anticipate that meso-GHMC/GSHMC will be of
interest for free energy calculations. The potential advantage of meso-GHMC/GSHMC
over GHMC/GSHMC lies in the reduced artificial viscosity of the Galilean invariant
momentum update (Koopman & Lowe, 2006).

8. IMPLEMENTATION AS A COMPUTER PROGRAM

In any of the above aspects, the various features may be implemented in hardware, or
as software modules running on one or more processors. Features of one aspect may

be applied to any of the other aspects.

The invention also provides a computer program or a computer program product for
carrying out any of the methods described therein, and a computer readable medium
having stored thereon a program for carrying out any of the methods described herein.
A computer program embodying the invention may be stored on a computer-readable
medium, or it could, for example, be in the form of a signal such as a downloadable

data signal provided from an Internet website, or it could be in any other form.
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Appropriate hardware includes a CPU for executing a program providing the simulation
(including processor parts carrying out the momentum refreshment process and the
conservative dynamics process), a memory for story the program executed by the
CPU, a hard disk for recording the program and the data, a CRT for displaying the
information to the user, a keyboard for the user to input the data, a mouse for the user
to manipulate menus and icons on the CRT, and a communication interface for network

connections.
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CLAIMS

1. A method of simulating behaviour of a thermodynamic system over time,
comprising a momentum refreshment process and a conservative dynamics process,

wherein the momentum refreshment process comprises:

given a starting position r and a starting momentum p of the model, partially
refreshing the momentum to define refreshed momentum p’> by considering solutions
for p’ determined by a numerical implementation for integrating a generating linear
differential equation.

dp K
7 = _;vrhk(r) 3
(i'd—g: = Vrhk(r)'M_1p> k=1,...,K,

where
Ve Dk is the gradient of hk(r),
hk(r) is a selected Galilean-invariant, position-dependent function

f}: ~ N(O’ﬁ‘l)’ K<3N 6:—" (€= < Scxc)r!

can be chosen arbitrarily;
N is the number of particles,

N (0, p!) denotes the normal distribution with zero mean and variance of B,
B=1/KgT where T is temperature

0<s<w2,and

M is the mass matrix

To seek solutions for given initial conditions

PO =p =p, &0)=¢& =N(0,871),k=1.. K

and using the starting momentum p or refreshed momentum p’ as the resulting
momentum p and using the starting position r as the resulting position r.
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2. A method according to claim 1, wherein the conservative dynamics process
comprises:

given a starting position r and starting momentum p of the system, running a
conservative dynamics simulation over a fixed number of iterations L and obtaining

new position r’ and new momentum p’;

evaluating the Hamiltonian * at position r’ and momentum p’ after the

conservative dynamics simulation; and

accepting or rejecting the new system configuration produced by the
conservative dynamics simulation according to a Metropolis-type function and, if the
new system configuration is accepted, using r’ as the resulting position r and p’ as the
resulting momentum p or, if it is rejected, using the original starting position r as the
resulting position r and keeping or negating the original starting momentum p to give

the resulting momentum p;

3. A method according to claim 1 or 2 wherein either the momentum refreshment or
the conservative dynamics process is the first step of the method, and the resulting
position r and resulting momentum p of the first step provides the starting position r

and starting momentum p for the next step.

4. A method according to claim 3, wherein the first step in the method is the

momentum refreshment step.

5. A method according to any of the preceding claims, wherein the entire method is

repeated at least once.

6. A method according to any of the preceding claims wherein the refreshed
momentum p’ is accepted or rejected according to a Metropolis-type function and
further comprising, if p’ is accepted, using p’ as the resulting momentum p and starting
position r as the resulting position r or if it is rejected, using starting momentum p as

the resulting momentum p and starting position r as the resulting position.
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7. A method according to any of the preceding claims, wherein the momentum
refreshment step constitutes a multiple momentum refreshment step, in which the
entire  momentum refreshment step is repeated a selected number of times
consecutively, to provide a final resulting momentum, which may be accepted or
rejected accordingly to a Metropolis-type function.

8. A method according to any of the preceding claims, whereins =27 A )2, >0
where 7 is the friction constant of DPD and L = 1, so that a Metropolis adjusted DPD

algorithm results for use in the simulation.

9. A method according to any of the preceding claims, wherein a shadow

Hamiltonian Hat is used for evaluation.

10. A method according to claim 9 wherein calculated properties are re-weighted at

the end of the entire method.

11. A method according to claim 9 or 10, wherein

p? = U(r,p, At)

and P is defined implicitly by
p’ = U(r,p', At)

where \I’(r» " At) is an appropriate transformation in the momentum vector p.

12. A method according to any of the preceding claims wherein the generating linear

differential equation is solved using the implicit midpoint rule.

13. A method according to claim 12 wherein the refreshed momentum p’ is accepted

automatically without a Metropolis acceptance step.

14. A method according to any of the preceding claims wherein a detailed balance of

probabilities is carried out in the conservative dynamics process and the accepted pair
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of position and momentum vectors (r, p) is obtained via a Metropolis accept/reject test
of the form

(t.p) = (rh,pY)  with probability min(l,exp(—35H))
' (r;~p;) otherwise '

where
SH = H(E, ph) — H(r;, pj)-

and H is either a Hamiltonian or a shadow Hamiltonian.

15. A method according to any of claims 1 to 13 wherein a modified detailed balance
of probabilities is carried out in the conservative dynamics step and the accepted pair
of position and momentum vaiues (r, p) is obtained via a Metropolis accept/reject test

of the form

(r.p) = {r*.p") with probability min{1,exp(~3dH))
PIE (v, p;) otherwise

where

OH = ’H(rL, pL) — H(rj,p5)-

16. A method according to any of the preceding claims, wherein Newton’s equation
of motion in the conservative dynamics step is solved using a time reversible and
symplectic method, preferably the generalized Stérmer-Verlet method, more preferably

the standard Stormer-Verlet method.

17. A method according to any of the preceding claims, wherein each conservative
dynamics iteration includes describing the forces on the particles of a thermodynamic
system using a chosen force field, integrating Newton's equation to predict the

positions and velocities at a new time and recalculation of the forces.

18. A method according to any of the preceding claims wherein the simulation
conditions provided correspond to a thermodynamic ensemble and wherein
conservative, dissipative and fluctuation forces between particles in the model are

taken into consideration to conserve Galilean invariance.
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19. A method according to any of the preceding claims, further comprising a step of

initially accepting input of simulation conditions and/or simulation parameters.

20. A method according to claim 19, wherein the simulation conditions include at
least one of volume, mass, temperature, pressure, number of particles, and total

energy.

21. A method according to claim 19 or 20, wherein the simulation parameters include
at least one of the number of repetitions of the momentum refreshment step and
conservative dynamics step, the order of shadow Hamiltonians used if any, the time
step in conservative dynamics, the number of conservative dynamics iterations, the
starting position and momentum for the first step in the method, the force field
parameters, a set of position dependent Galilean invariant functions and the constant s

for momentum refreshment.

22. A method according to any of the preceding claims, implemented by a computer.

23. A method according to any of the preceding claims, including the step of

displaying the results on a screen or printout.

24. A method of molecular simulation of a system over time comprising:

modelling the system using a particle-based model in which each particle represents a
group of atoms;

carrying out the method of simulating behaviour of a thermodynamic system according

to any of the preceding claims; and
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analysing the results obtained from the simulation and relating them to macroscopic

level properties.

25. A method according to claim 24, further comprising using the relationship of the
results to the macroscopic properties to assess and optionally modify the system at the

macroscopic level, before repeating the method on the modified system.

26. An apparatus which simulates behaviour of a thermodynamic system over time,
comprising a momentum refreshment processing part and a conservative dynamics
processing part, wherein the partial momentum refreshment processing part is
operable, given a starting position r and a starting momentum p of the model, to
refresh the momentum to define refreshed momentum p’ by considering solutions for
p’ determined by a numerical implementation for integrating a generating linear

differential equation.

ds

de
ds

dp K
L L
k=1

= Vehe(r)-M7'p, k=1,...,K,

where
Ve " s the gradient of hi(r),
hk(r) is a selected Galilean-invariant, position-dependent function

&r ~ \E(Osﬁ'l)’ K<3N can be chosen arbitrarily; =& &),

N is the number of particles,

N (0, p-') denotes the normal distribution with zero mean and variance of §-1,
p=1/KgT where T is temperature

0<s<n/2,and

M is the mass matrix

To seek solutions for given initial conditions
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p©0) = p =p, &0)=¢ =N(0,87Y),k=1.. ., K

and using the starting momentum p or refreshed momentum p’ as the resulting

momentum p and using the starting position r as the resulting position r.

27. A computer program which, when executed on a processor, carries out the

method defined in any of the preceding claims.

28. A method, apparatus or computer program according to an embodiment set out

in the description and/or drawings.
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