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(57) ABSTRACT

A method and system thereof for simulating behaviour of a
thermodynamic system over time, including a momentum
refreshment process and a conservative dynamics process,
where the momentum refreshment process includes partially
refreshing a momentum to define refreshed momentum by
considering solutions for a starting momentum determined by
a numerical implementation for integrating a generating lin-
ear differential equation.
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FIG. 3: Model A: Radial Distribution Function
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FIG. 4. Model A, Distinguish Statistically
from Numerically Induced Deviations



Patent Application Publication Feb. 4,2010 Sheet 3 of 4 US 2010/0030534 A1

1.5 - T
——DPD
——GSHMC
14+ 1
1.3¢
o
m 1.2
v
11t
1 5
034 0% 01 075 02
At
FIG. 5: Model A; Numerically Observed Temperature
2— ‘ r 2
——DPD
18+ ——GHMC H 181
T | —*—GSHMC
16} - 16}
14t 141
12+ 1.2+
_e )
£ 1t £ 1t
o By o
08} 1 08+
06} 1 06+
At=0.0025 At=0.0100
041 1 04+

15 2 25

FIG. 6 Model C: Radial Distribution Function
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FIG. 7: Model C: Numerically Observed Temperature
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METHOD, APPARATUS AND COMPUTER
PROGRAM FOR SIMULATING BEHAVIOUR
OF THERMODYNAMIC SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of United King-
dom Application No. 0813811.7, filed Jul. 28, 2008, in the
United Kingdom Intellectual Property Office, the disclosure
of which is incorporated herein by reference.

BACKGROUND

[0002] 1.Field

[0003] The present invention relates to simulation usable
for in-depth investigation of thermodynamic processes.
[0004] 2. Description of the Related Art

[0005] Generally, according to the time-scale and to the
physical scale which is to be simulated, different simulation
techniques are suitable. FIG. 1 is a diagrammatic illustration
of different kinds of modelling used as the time for modelling
and size of the model increase. At the lower end, quantum
mechanics takes more of a scientific rather than a practical
approach to model in the area of Angstrom units and picosec-
onds. Generally this area of modelling deals with individual
electrons and molecular mechanics deals with atoms. Con-
tinuing up the scale, coarse-grained modelling refers to mod-
els in which a few atoms which are close in terms of their
properties are considered together as one “particle” (or group
of atoms determined by the simulation parameters). Approxi-
mately the same approach can be taken with meso-scale mod-
elling, in which maybe hundreds of atoms can be clustered to
form one particle. Coarse-grained modelling is appropriate
fromssizes of a few Angstrom units to sizes of a few microme-
tres. Meso-scale modelling on the other hand can be inter-
preted as modelling on the scale of tens of nanometres to
millimetres. The reader will appreciate the overlap between
these two approximate scales. Finally, finite element analysis
works on a continuum basis rather than with particles and is a
more practical way of investigating properties of larger sys-
tems.

[0006] The present application is particularly, although not
exclusively, concerned with coarse-grained and meso-scale
modelling. These scales can be seen as the transitional regions
between macroscopic and microscopic regimes. In such
areas, atomistic methods such as molecular dynamics can be
oo expensive, whereas continuum solvers such as finite ele-
ment analysis neglect the microstructure, which could lead to
inaccurate results.

[0007] There are many phenomena which occur at meso-
scales and merit careful study using simulation. Fluid mixture
properties, such as emulsions, surfactants and phase separa-
tion in complex fluids can be investigated at meso-scale.
Colloid suspensions with their aggregation clustering and
dispersion are another area of interest. Also, the characteris-
tics of a polymeric solution, such as melting characteristics
and the behaviour of a dense solution are well suited to
meso-scale modelling. These are just a few of the areas of
application.

[0008] FIG. 2 illustrates different meso-scale modelling
techniques currently proposed for meso-scale modelling. Of
these, the most common is probably Dissipative Particle
Dynamics.
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[0009] Dissipative particle dynamics (DPD) has become a
powerful and popular method to perform meso-scale simula-
tions. DPD represents an intermediate position between all-
atom molecular dynamics (MD) and Navier-Stokes equa-
tions. As its name suggests, DPD is particle based. Its
computational cost scales linearly with the number of par-
ticles if the DPD algorithm is properly implemented, and
hence very large systems can be simulated. The method can
be used in complex-geometry domains. On a mathematical
level, DPD generally predicts the behaviour of systems con-
sisting of particles which are interacting through a combina-
tion of conservative, dissipative and fluctuation forces. New-
ton’s laws are thus observed. Moreover, DPD can give an
accurate prediction of hydrodynamic behaviour.

[0010] Despite its advantages, DPD has certain practical
problems. Commonly used integration schemes in DPD lead
to distinct deviations from the true equilibrium behaviour,
including deviations from the temperature predicted by the
fluctuation-dissipation theorem. None of the existing numeri-
cal implementations of DPD can reproduce correctly the
simulation temperature under the full DPD dynamics. Thus,
increases in the time-step used lead to a higher temperature
and changes in all the thermodynamic properties dependent
on temperature. Since the fluctuation-dissipation terms in
DPD can be comparable to the conservative contributions, the
non-preservation of thermodynamic equilibrium properties
poses a serious obstacle for practical simulations.

[0011] A similar problem arises in classical molecular
simulations when petforming simulations under constant
temperature.

[0012] Specifying the temperature in molecular dynamics
(MD) simulations for example, involves a thermostat that
represents the coupling of the molecular degrees of freedom
to a “heatbath”. Thermostats can be categorized as either local
or global. The simplest local thermostat is provided by Ander-
sen’s thermostat (Andersen, 1980), while the most common
global thermostat is the Nosé-Hoover thermostat (Hoovet,
1985).

[0013] From a physical point of view the local approach
seems more realistic since it avoids a global coupling of all
molecular degrees of freedom through extended “heatbath™
variables, Rigorous constant-temperature sampling methods
have been devised in the context of Monte Carlo methods, and
a thermodynamically consistent implementation (i.e. free of
numerical time-stepping artifacts) of Andersen’s thermostat
is provided by the hybrid Monte Carlo (HMC) method (Du-
ane et al., 1987) and the generalized hybrid Monte Carlo
(GHMC) method (Kennedy & Pendleton, 2001).

[0014] These methods are based on a hybrid of two long-
established molecular simulation methods, molecular
dynamics (MD) and Monte Carlo (MC). In MD, particles
interact deterministically over a time period under known
laws of physics whereas in MC conformations are accepted
(or rejected) with a probability governed by a so-called
Metropolis test involving positions and momenta.

[0015] The computational efficiency of HMC has been
improved through the work of Izaguirre and co-workers (Iza-
guirre & Hampton, 2004; Sweet et al., 2006). Similar
improvements have been achieved for the GHMC method by
Akhmatskaya & Reich (2006, 2008), which have led to the
generalized shadow hybrid Monte Carlo (GSHMC) method
(Akhmatskaya & Reich, 2008).

[0016] InGSHMC the acceptance rate of the dynamics part
of the GHMC is improved through the use of modified ener-
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gies in the Metropolis test. The GSHMC method allows for
efficient sampling of phase space for large molecular systems
and can be used as a powerful simulation tool in a wide range
of applications. It outperforms other popular simulation tech-
niques such as classical MD and the standard hybrid MC in
terms of sampling efficiency.

[0017] Even though these molecular simulation methods
provide thermodynamically consistent implementations of
constant-temperature molecular dynamics, they are not suit-
able for meso-scale simulations since the fluctuation-dissipa-
tion contributions are not applied in a dynamically consistent
manner. The reason for this is that the momentum refresh-
ment step of GHMC/GSHMC does not respect the Galilean
invariance (Newton’s third law) of the underlying force fields.
Galilean invariance is a principle of relativity which states
that the fundamental laws of physics are the same in all
inertial frames. Galilean invariance is one of the key require-
ments for simulation methods adopted in meso-scale model-
ling, because the collective motion of the particles at this scale
is more important, so that it is the co-operative nature of the
simulated system which requires modelling.

[0018] Most local thermostats do not respect the Galilean
invariance of the molecular force field, which implies conser-
vation of total and angular momentum. This limitation has
been overcome by the Lowe-Peters-Andersen thermostat
(Lowe, 1999; Peters, 2004 ). It has also been found (Koopman
& Lowe, 2006) that the Lowe-Peters-Andersen thermostat
reduces the artificially induced viscosity compared to the
Andersen thermostat at equal collision rates, which implies
faster diffusion of particles in phase space. However, the
Lowe-Peters-Andersen method cannot reproduce correctly
thermodynamic quantities independently of time step in MD
under DPD.

[0019] It is desirable to overcome the disadvantages of the
prior art, particularly in the coarse-grain and meso-scale
simulation areas.

SUMMARY

[0020] According to an embodiment of the invention, there
is provided a method of simulating behaviour of a thermody-
namic system over time, comprising a momentum refresh-
ment process and a conservative dynamics process. The
momentum refreshment process includes partially refreshing
a momentum to define refreshed momentum by considering
solutions determined by a numerical implementation for inte-
grating a generating linear differential equation.

[0021] Inanembodiment, the first operation is the momen-
tum refreshment. In some cases, it can give faster conver-
gence to start the simulation operation with the momentum
refreshment rather than the conservative dynamics iterations.
The entire method (process) may be repeated a selected num-
ber of times or until a preferred result in terms of system
energy or stability is achieved.

[0022] An embodiment includes introduction of multiple
momentum refreshment, which repeats the entire momentum
refreshment operation a selected number of times consecu-
tively to provide a final resulting momentum. The multiple
refreshment operation effectively chooses the best option for
the selected number of momentum refreshment operations.
This simple modification to the method (process) allows
improvement of an acceptance rate in a subsequent Metropo-
lis function and at relatively low cost in terms of processing
power and/or time.
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[0023] Additional aspects and/or advantages will be set
forth in part in the description which follows and, in part, will
be apparent from the description, or may be learned by prac-
tice of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0024] These and/or other aspects and advantages will
become apparent and more readily appreciated from the fol-
lowing description of the embodiments, taken in conjunction
with the accompanying drawings of which:

[0025] FIG. 1 is a graph comparing different modelling
methods;

[0026] FIG. 2 is a schematic diagram of meso-scale mod-
elling techniques;

[0027] FIG. 3 shows a radial distribution function g(r/r,) for
different values of the step-size At in model A;

[0028] FIG. 4 shows (r/r,) (g(x/r,)-1) for the different step-
sizes and methods to distinguish statistically from numeri-
cally induced deviations of g(r/r.);

[0029] FIG. 5 shows the radial distribution function g(r/r,)
for different values of the step-size At in model C,;

[0030] FIG. 6 shows the numerically observed temperature
{k;T) vs the step-size At in Model C; and

[0031] FIG. 7 shows the numerically observed temperature
{k;T) vs the step-size At in Model A.

DETAILED DESCRIPTION OF EMBODIMENTS

[0032] Reference will now be made in detail to the embodi-
ments, examples of which are illustrated in the accompanying
drawings, wherein like reference numerals refer to the like
elements throughout. The embodiments are described below
to explain the present invention by referring to the figures.
[0033] A method and system of simulating behaviour of a
thermodynamic system over a period of time. The method
includes a momentum refreshment process and a conserva-
tive dynamics process, where the momentum refreshment
process includes partially refreshing a momentum to define
refreshed momentum by considering solutions determined by
a numerical implementation for integrating a generating lin-
ear differential equation.

[0034] In an embodiment, issue(s) associated with gener-
ating linear differential equation is solved using the implicit
mid-point rule. This has an advantage including for some
situations that the refreshed momentum can be accepted auto-
matically without a Metropolis acceptance step. This advan-
tage is not however available where the method uses a shadow
Hamiltonian rather than a true Hamiltonian for reference
system energy calculations.

[0035] In other preferred embodiments these shadow
Hamiltonians are used to calculate system energy as asymp-
totic expansions of the true Hamiltonian step-size At. Here,
some re-weighting is needed for high accuracy. The shadow
Hamiltonian is a more sensitive indicator than the true Hamil-
tonian of drift in the energy caused by instability, in that it can
eliminate some of the noise in true Hamiltonian values. Nev-
ertheless for accurate results, re-weighting of the calculated
properties of the system is needed at the end of the method.
[0036] An additional strategy for increasing an acceptance
rate of the momentum refreshment is to introduce an appro-
priate transformation in the momentum vector p using a map
that is invertible in the momentum vector p. Such a transfor-
mation is particularly suitable for mitigating the lowered
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acceptance rate of the momentum refreshment process which
is a drawback of using shadow Hamiltonians.

[0037] As will be appreciated from the following detailed
sections, one distinction of invention embodiments over the
known/related art simulation methods is a newly developed
(local) momentum refreshment Monte Carlo step, which con-
serves the Boltzmann velocity distribution as well as total
linear and angular momentum. Surprisingly, the present
inventors have managed to create a link between DPD and
hybrid MC methods based on the GHMC/GSHMC methods
and thus combine some of the advantageous aspects of both.
Embodiments of the invention therefore increase the possi-
bilities for investigation of thermodynamic processes that
involve the co-operative nature of simulated systems and that
are outside the time-scale and length-scale ranges of atomis-
tic methods.

[0038] Moreover, invention embodiments include the
enhanced sampling abilities of the GHMC/GSHMC meth-
ods, reproduce thermodynamic quantities independently of
the time step in MD and have the ability to control transport
properties.

[0039] The Galilean invariance of the novel momentum
refreshment Monte Carlo step is important for non-equilib-
rium simulations on a meso-scale level where particles rep-
resent collective molecular degrees of freedom (Espatiol,
1995). Thus meso-scale material simulations are the primary
application area for the novel GHMC method. For that rea-
son, embodiments of the new method are referred to herein as
meso-GHMC or meso-GSHMC, even if they can also be used
in coarse-grain scale simulations.

[0040] Mesoscopic phenomena of so-called “soft matter”
physics, embracing a diverse range of systems including lig-
uid crystals, colloids, and biomembranes, are typically not
accessible to traditional simulation techniques such as
molecular dynamics (on the microscopic level) or reaction-
diffusion equations (on the macroscopic continuum level).
The development of appropriate mesoscopic model descrip-
tion has been a very active area for research over the last
decade. Most approaches rely on some form of “coarse grain-
ing” from the microscopic atomic description of soft matter.
The resulting models can be roughly classified as either being
particle-based (in which case particles no longer present indi-
vidual atoms) or kinetic density-based models (in which case
we obtain a continuum or lattice-based description). Meso-
GHMC and meso-GSHMC will be applicable to a wide range
of particle-based meso-scale models (Espafiol, 2003).
[0041] Constant temperature molecular dynamics simula-
tions provide another potential application area for meso-
GHMC. In this context, it should be noted that the Andersen
thermostat (as well as the HMC and GHMC methods) induce
a form of “artificial” viscosity into the system, which reduces
diffusion of particles in phase space, i.e., their “exploration”
of phase space (Frenkel & Smit, 2001). This artificial viscos-
ity increases with the collision frequency of the Andersen
thermostat while, on the other hand, a high collision rate is
desirable for keeping the system close to the target tempera-
ture. These two conflicting issues need to be balanced in
practice by an appropriate choice of the collision frequency.
[0042] Numerical experiments (following Vattulainen et
al., 2002) have been conducted to confirm that embodiments
ofthe invention using meso-GHMC as well as meso-GSHMC
methods reproduce thermodynamic quantities for constant
number of particles, constant volume, and constant tempera-
ture (NVT) ensemble. Deviations from analytic values are
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only due to finite sample size statistical fluctuations, but do
not depend on discretization parameters such as time-step and
collision frequency.

[0043] We describe the generalized hybrid Monte Carlo
(GHMC) algorithm of Kennedy & Pendleton (2001) for a
Hamiltonian (energy function).

1 1
Hr, p) = szM'lp+ Vi), o

with position vector re R and momentum vector pe R, N
the number of atoms, Me R*»**¥ the (diagonal) mass matrix,

and V: [R"— Rthe potential energy function.

[0044] We begin by recalling that a Markov process will
converge to some distribution of configurations if it is con-
structed out of updates each of which has the desired distri-
bution as a fixed point, and which taken together are ergodic.
The GHMC algorithm for the generation of the canonical
density function

p(rp)erexp(—p H ), with p=1/k,T )

is constructed out of two such steps (Kennedy & Pendleton,
2001).
Hamilton’s equations of motion

=M"p, p=-V,¥(#), (©)

are numerically approximated with the leapfrog/Stormer-
Verlet method

PR A7[VrV('”), @)
<z

P = A 2 )

©)

Ar
pn+l - pn+l/2 _ Tvr V(,}L+l)

over L steps and step-size At
[0045] The resulting map U_:(r,p)—(r, p"), T=LAt, pre-
serves volume and is time-reversible. Finally, a Metropolis
accept/reject test of the form

. Uy(r, p) with probability min(1, exp(—B5H)) @
v p)= (r,-p) otherwise,
with
OH = H(Uy(r, p)) = H(r, p) 8)
1s applied.

Introducing momentum flip F:(r,p)—(r,—p) in (7) provides the
validity of the standard detailed balance condition

AT Dp@)=AI)pd), *)

which in turns verifies the stationarity of a probability density
function (PDF) p (I') under a given Markov chain, i.e.:
P AT ID)p(D)dL, ®)

where the state space of a Markov chain, Q =R", consists of
states TeQ, and its transition probability kernel is A(T'IT). T
are proposal states.
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[0046]

mal (Gaussian) 1..d. distributed noise vector Ze R* and the
partial momentum refreshment process is given by

The momentum vector p is now mixed with a nor-

I (cos(a') —sin(a) Y p ©)
=)\ sin(@) cos(a@) ](E]

where

2= M, (10)
=@ G

&~N(0, 1),

i=1,...

and 0<o.=m/2 is an appropriate angle. Here N(0, 1) denotes
the normal distribution with zero mean and vnit variance.
[0047] Ifpand = are both distributed according to the same
normal (Gaussian) distribution, then so are p' and ='. The
special property of Gaussian random variables under an
orthogonal transformation (9) makes it possible to conduct
the partial momentum refreshment process without a
Metropolis accept/reject test. See Kennedy & Pendleton
(2001) for details.

[0048] The present inventors have come to the realisation
that it is possible to carry out a GHMC simulation without
requiring the standard momentum flip.

[0049] For high rejection rates the momentum flip in
GHMC leads to an undesirable Zitterbewegung (going for-
ward and backward) in the molecular trajectories. This has
been identified by Horowitz, 1991 as the main obstacle to
achieve higher sampling effiency under the GHMC method
compared to the HMC method.

[0050] We should stress that a standard detailed balance
relation (A) is stronger than (B) and one might search for
conditions alternative to (A) which still implies (B), ie.,
implies the stationarity of p(I") under a given Markov chain,
but eliminates the need for the additional momentum flip in
GHMC. Of particular interest to us are Markov chains that
allow for a map (involution) F: Q—Q, which satisfies (i)
F=F~! and (ii) p(T)=p(FT) for all 'eQ.

[0051] In Gardiner “Handbook on Stochastic Methods”,
2004 one finds the following detailed balance condition for
systems satisfying an involution F:

AT Dp@)=4FTIFT \pFTy=AEFTIFT )p(T") ©)

in the context of the Fokker-Planck equation. Condition (C)
implies (B) since

JATDpI)dr=pIAFTIFT)T=p(L").

[0052] We now generalize the modified detailed balance
relation (C) to Markov chain Monte Carlo (MCMC) methods.
This will of course apply to a GHMC method, which is a
MCMC method for systems of interacting panicles with posi-
tion r,eR>, momentum p,eR>, and mass m,, i=1, . .., N. The
phase space is Q=R* and the state Vanable is glven by

the involution (momentum flip) F is provided by

Fo=(r% oo h oD
the canonical distribution at temperature T is then given by (2)

and an energy function H is defined in (1). We obviously have
pM)=p(ED).
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[0053] Let T(T'IT) denote the proposal distribution of a
MCMC method and let us assume that the state space Q
permits an involution F. A proposal state I" is accepted
according to the Metropolis-Hastings criterion r(I",T")=E,
where £€[0,1] is a uniformly distributed random number and

o, 1)
pOTIT T

r”, )=
where 3(I",I') is any function with
8(I"T)=d(FT,FT")
that makes n(I",I)=1.

[0054] The probability for the induced Markov chain to
make a transition from I to I is now given by

A | D) =T | D7, T) = p(0y L6, T).
Similarly,
A(FT | FT") = T(FT | FT')r(FT, FT”)

= p(FT')"'8(FT, FT")

=pl'y'8(I", 1)

and the modified detailed balance relation (C) follows.
One can choose, for example,

o, ) = minfp(DT(I" | T), p(TYT(FT | FT')}
and,
A T) = ‘{ T(FT | FT')pl ]
mi.
(I Dp@)

If the proposal distribution satisfies
I D)=NFLFTY,

then we obtain the simplier (Metropolis) formulation

o f P
r", M= mlr{l, m]

[0055] Several algorithms are special cases of GHMC:

[0056] The usual hybrid Monte Carlo (HMC) algorithm
is the special case where a=n/2. The momentum rever-
sal in case of a rejected conservative dynamics part may
be ignored in this case since p'=E in (9) and the previous
value of p is entirely discarded.

[0057] Langevin Monte Carlo algorithms correspond to
L=1;i.e., a single conservative dynamics time-step with
T=At, and an arbitrary 0<a.=x/2 Langevin Monte Carlo
recovers stochastic Langevin molecular dynamics
(Allen & Tildesley, 1987)

dr=M"pdt, dp=—[V V(r)+yp]di-odW¥, 11)

[0058] provided a=(2yAD)'2, y>0 is a constant, o is
determined by the standard fluctuation-dissipation rela-
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tion (Allen & Tildesley, 1987), and W is a vector of
independent Wiener processes. In this regime, we find

that (9) reduces to
pp~=yAIp-(2yA1)'2E, 12
[0059] provided that a<<1, and one may view the

GHMC algorithm as a means to simulate stochastic
molecular dynamics (instead of using GHMC as a pure
sampling device).
[0060] The single conservative dynamics step (L=1) may
be replaced by a small number of steps such that the resulting
a=(2yLAN)" 7 still satisfies ci<<-1 for a given .
[0061] The inventors have proposed an extension of the
GHMC method to position-dependent momentum refresh-
ment operations.
[0062] The new meso-GHMC can make use of a modified
detailed balance relation (Gardiner, 2004) to eliminate the
momentum flip in the conservative dynamics part of GHMC
as explained above. See the algorithmic summary provided
below. However, it is also possible to keep the conservative
dynamics part as described above, so that the momentum flip
is retained.
[0063] The inventors have been able to realise that (9) can
be viewed as the solution to the linear differential equation

dp  _ dE (13)
2=

=, %:P,

at s=o.with initial conditions p(0)=p and Z(0)=2. We call (13)
the generating differential equation for the momentum pro-
posal (9). This equation, and its generalisation shown below is
close to the DPD equations set out in detail later in this text
and the inventors came to the realisation that such differential
expressions can form a link to DPD.

[0064] Alternative momentum proposal steps can be now
be devised by different choices of the generating differential
equation. One can, for example, use the more general formu-
lation

dp d= _ (14)
— =-B¢, —=B"M!

is ¢, P M~ p,

with

E0=¢E=@E, .. . &y) . §~NO, B

fori=1,... ,3N,

and B RN

an arbitrary matrix. The important features of (14) are the
following:

[0065] (a) The linear system (14) is Hamiltonian with
Hamiltonian function

H= 3 (M p+ ) 1

[0066] and skew-symmetric structure matrix
Oy —-B (16)
- [ B Oay }
[0067] (Leimkuhler & Reich, 2005).
[0068] (b) The solutions of (14) are time-reversible (Le-

imkuhler & Reich, 2005).
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[0069] (c) The solutions of (14) conserve the canonical
distribution

(17
PPy € eXP(—g{pTM’1p+§T§})- "

Based on the formulation (14), the inventors use the linear
differential equation

(18)
dp X b
== —; Vb i

dé, _ (19)
2 =V ()M =1,...

o= Vhn)- M, k=1 K

for the meso-GHMC method. Thus integration, or a numeri-
cal approximation of integration, is required to solve the
equations and calculate the refreshed momentum. Here the
position-dependent functions h, can be chosen arbitrarily. If,
however, the functions {h, } are chosen to be Galilean invari-
ant (i.e., invariant under translations and rotations of the coor-
dinate system), then (18)-(19) conserve total linear and angu-
lar momentum and become suitable for meso-scale
simulations. Specific choices for {h,} will be discussed in
detail below in the context of dissipative particle dynamics.
[0070] To obtain a partial momentum refreshment, we seek
the solutions at s=a for given initial conditions

POP=p, GOFE =-NOP, k=1, K. (20)
Let us denote the linear solution operator, generated by the
solutions of (18)-(19), by R(s)e RENME=GN¥=K) The solution
operator R(s), 0=s=q, has the following properties:

[0071] (a) The solutions of (18)-(19) are volume con-
serving, i.e., det R(s)=1.

[0072] (b)Givenafixed positionvectort, the solutions of
(18)-(19) are time reversible, ie, JFR(s)F=R(-s).
Here JFdenotes the linear involution operator that
changes the sign of all §, k=1, ..., K.

[0073] (c) The solutions of (18)-(19) conserve the
extended Hamiltonian/energy

. Lk 21
Ho (1, p {6l = SPTMilp +Vi+ Ezg’%
= k=1

1
=H(r, p) + 5§T§

[0074] for r=const.
[0075] (d) Property (c¢) immediately implies that the
solutions of (18)-(19) conserve the extended canonical

distribution
Pest < exp(—fH,), 22)
ie.,
—pH(r, p(0) - —BH(r, p(s) - 23)

K _ K
Yy aor |77 peY aor?
=1 X =1

[0076] or, in more compact notation, p,,,cR(s)=p,,,-
[0077] We now consider the numerical implementation of
(18)-(19). To do so we follow the standard hybrid Monte
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Carlo (HMC) methodology (Duane et al., 1987; Meh-
lig et al., 1992), integrating (18) and (19) and consid-
ering time-reversible and volume conserving (sim-
plectic) propagators for the dynamics in p and {&;}
with fixed position vector r. Two such methods will be
considered: (i) an explicit one, which does not con-
serve (21), and (i1) an implicit one, which does con-
serve (21).

[0078] A first choice is provided by the application of the

Stormer-Verlet method (see, e.g., Leimkuhler & Reich

(2005)) to (18)-(19) and we obtain

. LK (24)
P2 = pi 7; v, b (D&,
&' =gl - AV () M >
k=1,... K,

. 26)
Pl = iz % V(g

k=1

The numerical propagator (24)-(26) is applied over J>1 steps
with step-size As=a/J and initial conditions (20). The final
result, denoted by p'=p” and €' =€,”, k=1, . .., K, is accepted
with probability

[ Pelr, PG })] @n
Poceepr = min| 1, ————==|
i m“{ Pealr. p. {6ch)
[0079] Incaseofrejection, we continue with the initial p. In

line with the standard HMC method, the {£';} are entirely
discarded after each completed momentum update step.

[0080] NotethatP,,,.,,—>1 as As—0. This follows from the
convergence of the numerical propagator to the exact R(at) as
As—0. Hence, as a rule of thumb, we suggest to pick J large
enough such that the rejection rate in (27) becomes negligible
(e.g., less than 1%) for given a.

[0081] An alternative propagator is obtained by applying
the implicit midpoint rule (see, e.g. Leimkuhler & Reich
(2005)) to (18)-(19) to obtain:

o X 28)
P=p=5 ) Ve + 6.

k=1

€=+ 3RO M 4 p) 9

k=1,.. K.

[0082] The resulting linear equations in (p',{€".}) can be
solved by a simple fixed point iteration or some other iterative
solver. The implicit midpoint rule is not commonly used, but
the inventors have found an appealing aspect of its implemen-
tation (28)-(29) in that it conserves the extended energy (21)
exactly and, hence, also the corresponding canonical distri-
bution function (22). Since the method also conserves volume
and is time-reversible, the proposed momenta p' are always
accepted while the variables £/, k=1, . . . , K, are entirely
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discarded after each momentum refreshment process. Thus
for this preferred way of solving (18) and (19), no Metropolis
acceptance step is necessary.

[0083] Because of the necessary fixed point iteration, the
implicit midpoint method (28)-(29) is more expensive than
the Stormer-Verlet method (24)-(26). However, we neverthe-
less recommend the implicit midpoint method for use in
meso-GHMC because of the ideal acceptance probability
Paccept:l'

[0084] The meso-GHMC method is defined through a
Hamiltonian (1), inverse temperature B=1/k5T, a set of posi-
tion-dependent functions {h,(r)},_,%, time-step At, number
of time-steps L, and parameter a for the momentum refresh-
ment process. The method generates a sequence of position
and momentum vectors (r,, p,), j=1, . . ., J. Set forth below is
a summary of a single iteration of a preferred meso-GHMC
method.

[0085] (i) Conservative dynamics process. Given the last
accepted pair of position and momentum vectors (t,, p,),
we numerically integrate the Hamiltonian equations of
motion (3) over L time-steps with the Stormer-Verlet
method, (4)-(6), step-size At, and initial conditions rO:rj,
p°=P,. This results in the approximation (r", p*). The
accepted pair of position and momentum vectors (t, p) is
obtained via a Metropolis accept/reject test of the form

(f, pb) with probability min(1, exp(—B6H)) (30)
ryp)=
’ (rj, p;) otherwise,
where
SH = H(t, phy - Hrj, pj). 3D

[0086] (i) Momentum refreshment process. A sequence
of i.i.d. random numbers E,~N(0,3™1), k=1, . . ., K, is
generated. Using the implicit midpoint rule implemen-
tation of the momentum refreshment process, the system
(28)-(29) is solved for (p',{E",}) by a fixed point itera-
tion. Alternatively, the Stormer-Verlet method or
another suitable method may be used in which case a
Metropolis acceptance step is required.

[0087] (iii) The newly accepted pair of position and
momentum vectors is provided by r;, ,=r (from the con-
servative dynamics part) and p,,,=p' (from the momen-
tum refreshment process), respectively.

[0088] We note that the conservative dynamics process is
first in this example, but the momentum refreshment process
could equally be first and/or could moreover be repeated
before progressing to the conservative dynamics step (if the
solution to (18) (19) is not obtained using the implicit mid-
point method).

[0089] Under the assumption of ergodicity of the induced
Markov chain, the ensemble average of an observable Q(r,p)
with respect to the canonical ensemble (2) is approximated as

1d (32)
o= 7; Qrj, p))-
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[0090] The Metropolis criterion (30) needs to be replaced
by
(%, p¥)  with probability min(1, exp(—BdH)) (33)
-p)= (rj, —p;) otherwise

in case the conservative dynamics part is to be conducted with
a momentum flip. No other parts of the algorithm need to be
modified.

[0091] We emphasize again that both (30) as well as (33)
lead to a Monte Carlo method satisfying a detailed balance
relation with respect to the canonical density function.
[0092] Dissipative particle dynamics (DPD) has become a
very popular method for meso-scale simulations of materials.
Set forth below is a short summary of the method and discus-
sion of linkage to the meso-GHMC method. The discussion
will result in a new DPD Monte Carlo method, which we call
Metropolis adjusted DPD (MetADPD).

[0093] Following thenotation of Espaiiol & Warren (1995),
the standard DPD method of Hoogerbrugge & Koelman
(1992) can be formulated as a stochastic differential equation
(SDE):

dro= P
i

G4

dpi = [F; - )’Z wlryle;-vyey

J#E

dr+ C"Z w'? (rije;d Wy, (35

J#

where m;, is the mass of particle i with position vector

7= (X5 Zi)T: Fy=Fey 1=, eij:’ﬂij/’ﬂl/" Yy VitV

vip/ms
and F=-V, V(r) is the conservative force acting on particle i.
The dimensionless weight function w(r) can be chosen in a
rather arbitrary manner. However, to reproduce the constant
temperature macro-canonical ensemble, the friction coeffi-
cient y and the noise amplitude o have to satisfy the fluctua-
tion dissipation relation

o=\/2F5TY. (36
[0094] Finally, W, (t)=W ,(t) are independent Wiener pro-
cesses. Recall that the finite-time increments AW, (t)=W(t+
T)- W, (1) of a Wiener process are Gaussian distributed with
mean zero and variance v, i.e., AW, (T)~N(O1).

[0095] Following Cotter & Reich (2003), let us write the
equations (34)-(35) in a more compact and general manner:

dr=M"pdt, (37

K (38)
dp ==V, V(di - Z V. i (Oyhs ()d 1+ ad Wi,
k=1

where r is the collection of the N particle position vectors r,,

p 1s the associated momentum vector, M is the diagonal mass

matrix, v=M™"p, V(r) is the potential energy,
a2V Iy v= Jydr)-M'p, (39)

and the functions h(r), k=1, . . ., K, can be chosen quite
arbitrarily.
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The choice
B =(ry), = (), k=1, . LK, (40)

With K=(N-1)N/2 in (38) leads back to the standard DPD
model. However, one can also set K=3N and

Brymmi Px, By(r=m Py by NG)=m oz, (41)

i=1, ..., N, in (38), which leads to the standard Langevin
model (11). Yet another variant of (38) is obtained in the
context of the Hamiltonian particle mesh (HPM) method
(Frank & Reich, 2003; Frank et al., 2002), which itself is an
application of the classical particle-in-cell (PIC) or particle-
mesh methods (Hockney & Eastwood, 1988; Birdsall &
Langdon, 1981) to geophysical fluid dynamics (GFD)
(Salmon, 1999). Here the functions h,(r) would refer to some
cell averaged quantity and k would be its cell index, where the
cells are equivalent to the particles referred to previously. For
example, the fluid density at a grid point x, can be approxi-
mated by

N 42)
he(r) = ) it = i),

i=1

with(r) some proper shape function such as a tensor product
cubic B-spline. We finally mention an application to molecu-
lar dynamics (MD) suggested by Ma & Izaguirre (2003).
Here the stochastic part of the dynamics is used to stabalize
long-time step methods and the functions h, correspond to
entries in the MD potential energy function. For example, if
one would like to stabilize a bond stretching mode between
atoms i and j, then hy(r)=Ir,-rl.

[0096] The optimal numerical treatment of the DPD equa-
tions is still a subject of debate. See, for example, the publi-
cations (Pagonabarranga et al., 1998; Besold et al., 2000
Shardlow, 2003; Vattulainen et al., 2002; Peters, 2004; Haf-
skjold et al., 2004; Koopman & Lowe, 2006). In particular, it
is found that the numerically observed temperature T*
depends on the step-size At and differs from the target tem-
perature T. Methods are now available that to T*=T in the
absence of conservative forces (Peters, 2004; Koopman &
Lowe, 2006). However, none of the existing methods leads to
T*=T under the full DPD dynamics.

[0097] We now discuss the connection between the newly
proposed meso-GHMC method and DPD. Similar to the
already discussed Langevin Monte Carlo algorithms (see
§2.4), one can derive a DPD Monte Carlo algorithm from the
meso-GHMC method by setting L=1 in the conservative
dynamics part of the meso-GHMC. We also set a=(2yAt)/*2,
v>0 the friction constant of DPD, in the momentum refresh-
ment process and find that (28)-(29) reduce to

YA, Iy () -M ' p +} @3

(2yAnZ,

K
p-p= —ZVJWJ

k=1

¥ -r=0

to leading order in the step-size At.

[0098] Hence we may view the algorithm of §3.2 with =1
asa splitting method (i.e., into the conservative dynamics part
and the fluctuation-dissipation part, respectively) for (37)-
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(38) put into the framework of Monte Carlo methods. The
resulting DPD Monte Carlo algorithm preserves the target
temperature T and the associated canonical distribution (2)
exactly. Furthermore, linear and angular momentum are con-
served under suitable choices of the functions {h,(r)}. We call
the resulting Monte Carlo method the Metropolis adjusted
DPD (MetADPD). This MetADPD is equivalent to meso-
GHMC or meso-GSHMC (which is considered below), with
L=1 and some truncation, as explained above. Therefore the
corresponding considerations and advantages apply.

[0099] The key idea of the generalized shadow hybrid
Monte Carlo (GSHMC) method of Akhmatskaya & Reich
(2008) is to assess the Monte Carlo steps of GHMC with

regards (o a shadow Hamiltonian H ,, (a high order approxi-
mation of a Hamiltonian), which increases the acceptance
rate in the conservative dynamics part of GHMC. See Akh-
matskaya & Reich (2006, 2008) for appropriate choice of the
shadow Hamiltonian.

[0100] We now outline the generalization of meso-GHMC
to GSHMC. We will call the resulting method meso-
GSHMC. Again the momentum flip in the conservative
dynamics part of GHMC can be eliminated based on the
theoretical results of Gardiner, 2004. However, we also
emphasise the conservative dynamics step of the original
GSHMC method could be maintained if desired.

[0101] We now describe the modified momentum refresh-
ment process.
[0102] To putthe meso-GHMC method in the context of the

GSHMC method of Akhmatskaya & Reich (2008), we need
to modify the partial momentum update process, for example
as defined by (28)-(29) (in case of the implicit midpoint
implementation). The key idea is to replace the extended
canonical density (22) by

K
O p &N = exp[—ﬁ%(r, p-Bi2y. &

k=1

] (@4

and the acceptance probability (27) by

NS })] s)
Paceepr = min| ——————|.
=i P p &)
[0103] NotethatP,., =1 for the implicit midpoint imple-

—~

mentations (28)-(29) and H ,, =T . However, this is no longer

the case for H , =H. This is a drawback of GSHMC, which
can be partially overcome by GS2HMC (Akhmatskaya &
Reich, 2008). In our context, this implies that the initial con-
ditions p° in (20) gets replaced by

PO (EpAY (46)

and p' is now defined implicitly by
P p A @7

where W(r,,At) is an appropriate transformation in the
momentum vector p (Sweet et al., 2006; Akhmatskaya &
Reich, 2008). An additional constraint on the choice of W is
angular and linear momentum conservation under the result-
ing momentum refreshment process.
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[0104] Since the meso-GSHMC method samples with
respect to a modified canonical ensemble, it is necessary to
reweight the computed samples {€,} of an observable Q=Q
(r,p). See Akhmatskaya & Reich (2006, 2008) for details.

[0105] The meso-GSHMC method is defined through a

Hamiltonian (1), a shadow Hamiltonian HAt, inverse tem-
perature B=1/k,T, a set of position-dependent functions {h,
()}, %, time-step At, number of time-steps L, and parameter
o for the momentum refreshment process. The method gen-
erates a sequence of position and momentum vectors (r;
p)y=l, . . ., J. Set forth below is a summary of a single
iteration of the meso-GSHMC method.

(i) Conservative dynamics process. Given the last accepted
pair of position and momentum vectors (r;, p,), we numeri-
cally integrate the Hamiltonian equations of motion (3) over
L time-steps with the Stormer-Verlet method, (4)-(6), step-
size At, and initial conditions rO:r], porpj. This results in the
approximation (r, p™). The accepted pair of position and
momentum vectors (r, p) is obtained via the Metropolis
accept/reject test

. 5) (rt, pby with probability min(1, exp(—,Bé‘I:(),) “8)
rp= »
(rj, pj) otherwise
where
15(]:{ = ’f{m(l‘L, pL) - ‘7:{A,(rj, pj). (49

(i) Momentum refreshment process. A sequence of ii.d.
random mumbers £,~N(0,871), k=1, . . ., K, is generated and
using the implicit midpoint rule implementation of the
momentum refreshment process, the system (28)-(29) is
solved for (p', {€'.}) by a fixed point iteration. The accepted
momentum vector p" is obtained via

, {p’ with probability min(1, exp(~ B6F,,)) (50)

p =
p  otherwise,

where

5D

. . & . &
My 1= {HAI(’U P+ EZ _f/:} - [HAr(ra pit 5; & |-

k=1

(iii) The newly accepted pair of position and momentum
vectors is provided by r;, | =r (from the conservative dynamics
part) and p,,,=p" (from the momentum refreshment process),
respectively.

[0106] Asbefore, the iterations could start with the momen-
tum refreshment process or the conservative dynamics pro-
cess and/or the refreshment process could be repeated a pre-
ferred number of times before the conservative dynamics
process.

[0107] A Metropolis acceptance step may also be appropri-
ate for the implicit midpoint method, because in meso-
GSHMC, there is a deviation from the ideal acceptance prob-
ability P =1, caused by the truncation.

accept
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[0108] Under the assumption of ergodicity of the induced
Markov chain, the ensemble average of an observable Q(r,p)
with respect to the canonical ensemble (2) 1s approximated as

1< (52)
72 wildrj, pj)
1
O =——
TR
where

w; = explBHulr, p = H(rs, p)]) ©3)

[0109] In case the conservative dynamics part is run with a
momentum flip, the Metropolis criterion (48) needs to be
replaced by

. (5, pY)  with probability min(l, exp(-B670) o4
r’ =

F (rj, —p;) otherwise
[0110] No other parts of the algorithm need to be modified.
[0111] The numerical experiments are conducted for

Model A and Model C of Vattulainen et al. (2002) because
these models are well-defined and depict different situations.
[0112] Numerical results from the meso-GHMC/GSHMC
methods are compared to the MD-VV implementation (Vet-
tulainen et al., 2002) of DPD (for simplicity of presentation,
we start with half a time-step in the positions:

) Ar (55)
+1/2 _ Sag-lon
g =g M
pn+l — p" — AV, V(,n+1/2)_ (56)
K
YAV, Iy (V).
PTG I ol
- Mg+ Qpan2e,
67

At
qml — qn+1/2 + TMflpml’

where £,~N(0,6™1), k=1, ..., K are i.i.d. random numbers.
[0113] We first summarize the two model systems. See
Vattulainen et al. (2002) for more details; the relevant parts of
this paper are incorporated by reference.

[0114] We consider a total of N=4000 particles with mass
m=1 in a cubic domain of size 10x10x10 with periodic
boundary conditions. The conservative forces are set equal to
zero, i.e., the Hamiltonian (1) reduces to

58
oy (8

[

and the resulting equations of motion can be solved exactly.

Hence we formally use H,,=H as a modified energy for
meso-GSHMC and it is sufficient to only implement meso-
GHMC for Model A. We always set L=1 in the conservative
synamics part of meso-GHMC, i.e., 7=At and perform experi-
ments for different values of the step-size At.
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[0115] The functions {h,(r)} for the momentum reftesh-
ment process are defined via

, 1=r/r, forr=r. 59)
o= 0, for r>r.’

in (40). The cutoft distance is set to equal r,=1. We also use
a=(2yAn)"? for all Monte Carlo simulations with y=4.5.
[0116] The reference experiments with the DPD method
(55)-(57) use the same parameter settings.

[0117] Model C is a simple interacting Lennard-Jones fluid
with truncated pairwise interaction potential

RTINS AU (60)
o
Ulry) = rij Tii

0, TP

withr =1 and I=2~""°. The simulation box is of size 16x16x16
witha total of N=2867 particles. This corresponds to a density
of p=0.7.

[0118] The conservative dynamics part is implemented
with t=0.05 and varying values for At and, hence [=t/At.
[0119] The momentum refreshment process is imple-
mented as for Model A with the only difference being that
a=(2y1)"?~4.4721 for all Monte Carlo simulations with
v=200 (0=20, respectively).

[0120] The meso-GSHMC method is implemented with a

fourth-order accurate shadow Hamiltonian as HAt. See Akh-
matskaya & Reich (2006) for a formulation of the shadow
Hamiltonian. Note, however, that the truncated interaction
potential (60) leads to a continuous only force field. Higher
regularity of the force fields is required to achieve a fourth-
order accuracy in the shadow Hamiltonian. The fourth-order
behavior is indeed not observed in our numerical experi-
ments. See Hafskjold et al. (2004) for the use of smoother
truncation schemes in the context of DPD.

[0121] The reference experiments with the DPD method
(55)-(57) use the same parameter settings.

[0122] We now discuss the numerical findings. We empha-
size that all Monte Carlo simulations were conducted with a
momentum flip in the conservative dynamics part.

[0123] The numerical results from the meso-GHMC and
DPD simulations can be found in FIGS. 3-5.

[0124] FIG. 3 shows aradial distribution function g(r/r.) for
different values of the step-size At in model A. The analytic
value is g(r/r.)=1. Numerical results are obtained from a
standard DPD integration scheme and the newly proposed
meso-GHMC/GSHMC method for different values of the
step-size At.

[0125] In FIG. 4 we also provide (r/r.) (g(r/tr.)-1) for the
different step-sizes and methods to distinguish statistically
from numerically induced deviations of g(r/r,).

[0126] Following the arguments of Peters (2004), FIG. 4
thus demonstrates that the deviations of the numerically com-
puted radial distribution function g(r/r_) from its exact value
g=1 is of purely statistical origin (finite sample size) for the
meso-GHMC method. The same does not hold for the DPD
method unless At=0.05. We also note that the meso-GHMC
method exactly reproduces the target inverse temperature
p=1 for all values of At, while the DPD method (55)-(57)
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leads to a nearly linear increase in the numerically observed
temperature with respect to the step-size At.

[0127] FIG. 5 shows the numerically observed temperature
{(kzT) vs the step-size At in Model A. Results are obtained
from a standard DPD integration scheme and the newly pro-
posed meso-GHMC/GSHMC method. The correct result is
(kzT1.

[0128] FIG. 6 shows the radial distribution function g(r/r,)
for different values of the step-size Atinmodel C. Results are
obtained from a standard DPD integration scheme and the
newly proposed meso-GHMC/GSHMC methods.

[0129] We conclude from FIG. 6 that the computed radial
distribution functions are in nearly perfect agreement for all
simulation methods and step-sizes At. Note, however, that
Vattulainen et al. (2002) do not specify the number of par-
ticles for Model C and, hence, our numerical results may
differ slightly from the findings in Vattulainen et al. (2002).
[0130] FIG. 7 shows the numerically observed temperature
{k;T} vs the step-size At in Model C. Results are obtained
from a standard DPD integration scheme and the newly pro-
posed meso-GHMC/GSHMC methods. The correct result is
{k;T)=1.

[0131] We therefore confirm in FIG. 7 that the Monte Carlo
methods exactly reproduce the target inverse temperature
p=1.

[0132] We finally state the rejection rates for meso-GHMC
and meso-GSHMC in Table 1 below. The meso-GSHMC
slightly reduces the rejection rate in the conservative dynam-
ics part. This is at the expense of a non-zero rejection rate in
the momentum refreshment process. It appears that the meso-
GHMC method is optimal for force fields with a non-smooth
cut-off. A smooth truncation of the force field has been dis-
cussed by Hafskjold et al. (2004) in the context of DPD.

TABLE 1

Rejection rates in the conservative dynamics (CD) and momentum
refreshment (MR) steps of meso-GHMC and meso-GSHMC, respectively,
for different values of the step-size At and the contant T = LAt = 0.03.

rejection rate in  rejection rate in

method step-size CD step MR step
meso-GHMC 0.0025 1.65% 0%
meso-GSHMC 0.0025 1.28% 0.11%
meso-GHMC 0.0100 26.51% 0%
meso-GSHMC 0.0100 20.64% 1.64%

[0133] We have described embodiments which include an
extension of the GHMC/GSHMC method to a momentum
refreshment process which respects the Galilean invariance
of the underlying conservative dynamics. It has been demon-
strated that these embodiments (referred to as meso-GHMC
and meso-GSHMC) reproduce thermodynamic quantities
correctly and independently of the step-size At for the con-
servative dynamics part. This is in contrast to standard sto-
chastic dynamics implementations of DPD. The Galilean
invariance of the momentum refreshment process is impor-
tant for non-equilibrium computations (conservation of linear
and angular momentum) and for sampling (reduced artificial
viscosity).

[0134] Below we outline possible implementations of
invention embodiments referred to as meso-GHMC/meso-
GSHMC in the context of massively parallel computing
facilities and potential application areas within meso-scale
simulation tools.
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[0135] There are at least four immediate strategies to put
Monte-Carlo methods such as meso-GHMC/meso-GSHMC
into the context of massively parallel computing. The first is
to use massively parallel implementations of the necessary
force field calculations. This is easy to achieve whenever the
force field is short-range (as is often the case for DPD). More
sophisticated strategies are required for long-range interac-
tions (such as electrostatics). See, for example, the fast mul-
tiple algorithms of Greengard & Rokhlin (1987). The second
application arises when Monte Carlo chains are conducted in
parallel and independently. The final two strategies arise as
refinements of this “trivial” (but often very useful) exploita-
tion of parallelism. We describe them in some detail next. We
wish to emphasize that these four strategies can be combined
within a single implementation to produce multi-level paral-
lel algorithms.
[0136] Inparallel tempering (see, for example, Liu (2001)),
the target distribution is embedded into a larger system which
hosts a number of similar distributions differing from each
other only in temperature parameters. In our context, the
obvious choice is to consider a family of canonical distribu-
tions

p;cexp(-pH), (61)
where ,=1/k;T,, T, a sequence of temperature with target
temperature T=T, for an appropriate index i. and H is the
Hamiltonian. Then, parallel GHMC/GSHMC are conducted
to sample from these distributions p, independently. These
multiple distributions are connected by proposing an occa-
sional configuration exchange between two adjacent (in tem-
perature) sampling Monte Carlo chains. Parallel tempering
allows “large” configurational moves at “high” temperature,
which can get inserted into lower temperature ensembles via
exchange steps. However, to allow a sufficient number of
successful exchanges between adjacent densities, the densi-
ties must overlap strongly. See Liu (2001) for more details
and Brenner et al. (2007) for recent improvements of the
method in the context of molecular dynamics.
[0137] Note that temperature T could be replaced by
another parameter in a parallel tempering method. Hence
parallel tempering could also be used for free energy calcu-
lations within the thermodynamic integration framework.
[0138] We finally mention the orientational bias Monte
Carlo (OBMC) (or multiple-try Metropolis) method as a
means to enhance the acceptance rate in the momentum
refreshment of shadow hybrid Monte Carlo methods. The
OBMC method provides a rigorous means to exploit multiple
(parallel) proposals within a Monte Carlo context. See Liu
(2001) for a description of the OBMC method.
[0139] Thebasicidea (put into the context of GSHMC)is to
generate k trial momentum vectors p;, =1, . . . , k given a
momentum vector p. Select p=p, among the momentum vec-
tors {p,} with probability m(p,) proportional to the target

distribution, ie., m(p,)xexp (-fH,.,). Next we generate
another k-1 reference points {f,} using the momentum pro-
posal step with p as the initial value. Set p,=p. Finally accept
p with probability

k 62)

and reject with the remaining probability.
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[0140] Particle-based meso-scale models, suitable for
meso-GHMC/GSHMC, can be found in a wide range of
application areas including colloid-polymer systems, mem-
branes and micro/nano channels, dynamic wetting, and lipo-
some formation. Bionanotechnology is a particularly impor-
tant area of application and covers, for example, drug delivery
and therapeutics (including nanoscale assembly of liposomes
and dendriners, and cholesterol removal); screening using
membrane simulation; and bioanalysis (including nanopar-
ticle transport and microfluids to nanofluids). Another area of
application is soft nanotechnology, the design and application
of soft materials with nanoscale structures. Soft particles such
as surfactants, block copolymers and proteins can be studied
to predict the self assembly structures from nanometres to
microns in size. Such simulations are of use in the food, oil,
paint and cosmetic industries. Meso-GHMC/GSHMC is
amenable to massively parallel computing and can contribute
to solving many important environmental problems such as
local weather forecasting, global climate predictions, nuclear
waste remediation. The invention embodiments also have use
in permeation and separation of toxic solutes, developing
environmentally friendly new materials, and low-carbon
energy generation.

[0141] Besides meso-scale simulations, we anticipate that
meso-GHMC/GSHMC will be of interest for free energy
calculations. The potential advantage of meso-GHMC/
GSHMC over GHMC/GSHMC lies in the reduced artificial
viscosity of the Galilean invariant momentum update (Koop-
man & Lowe, 20006).

[0142] Inany ofthe above aspects, the various features may
be implemented in hardware, or as software modules running
on one or more processors. Features of one aspect may be
applied to any of the other aspects.

[0143] The invention also provides a computer program or
acomputer program product for carrying out any of the meth-
ods described therein, and a computer readable medium hav-
ing stored thereon a program for carrying out any of the
methods described herein. A computer program embodying
the invention may be stored on a computer-readable medium,
or it could, for example, be in the form of a signal such as a
downloadable data signal provided from an Internet website,
or it could be in any other form.

[0144] Appropriate hardware includes a CPU for executing
a program providing the simulation (including processor
parts carrying out the momentum refreshment process and the
conservative dynamics process), a memory for story the pro-
gram executed by the CPU, a hard disk for recording the
program and the data, a CRT for displaying the information to
the user, a keyboard for the user to input the data, a mouse for
the user to manipulate menus and icons on the CRT, and a
communication interface for network connections.

[0145] As mentioned above, embodiments can be imple-
mented in computing hardware (computing apparatus) and/or
software, such as (in a non-limiting example) any computer
that can store, retrieve, process and/or output data and/or
communicate with other computers. The results produced can
be displayed on a display of the computing hardware. A
program/software implementing the embodiments may be
recorded on computer-readable media comprising computer-
readable recording media. The program/software implement-
ing the embodiments may also be transmitted over transmis-
sion communication media. Examples of the computer-
readable recording media include a magnetic recording
apparatus, an optical disk, a magneto-optical disk, and/or a

Feb. 4,2010

semiconductor memory (for example, RAM, ROM, etc.).
Examples of the magnetic recording apparatus include a hard
disk device (HDD), a flexible disk (FD), and a magnetic tape
(MT). Examples of the optical disk include a DVD (Digital
Versatile Disc), a DVD-RAM, a CD-ROM (Compact Disc-
Read Only Memory), and a CD-R (Recordable))RW. An
example of communication media includes a carrier-wave
signal.

[0146] Further, according to an aspect of the embodiments,
any combinations of the described features, functions and/or
operations can be provided.

[0147] Although a few embodiments have been shown and
described, it would be appreciated by those skilled in the art
that changes may be made in these embodiments without
departing from the principles and spirit of the invention, the
scope of which is defined in the claims and their equivalents.

1. A computer-implemented method of simulating behav-
iour of a thermodynamic system over time, comprising:

executing a momentum refreshment process and a conser-

vative dynamics process, the momentum refreshment

process including:

defining a refreshed momentum by partially refreshing a
momentum in accordance with a starting position and
a starting momentum of a model; and

using the starting momentum or the refreshed momentum

as a resulting momentum and using the starting position

as a resulting position.

2. The method according to claim 1, wherein a starting
position r and a starting momentum p of the model is pro-
vided, the partially refreshing of the momentum defines
refreshed momentum p' by considering solutions for p' deter-
mined by a numerical implementation for integrating a gen-
erating linear differential equation

dp K
= :—; Y, (),

dé&
B g, M,
ds

k=1,... K,

where

V. L, is the gradient of h,(r),

h(r) is a selected Galilean-invariant, position-dependent
function

£,~N(0,71), K=3N can be chosen arbitrarily; E=(E, . . .
£

N is the number of particles,

N(0. B denotes the normal distribution with zero mean
and variance of 7',

B=1/K,T where T is temperature 0<s=m/2, and

M is the mass matrix

to seek solutions for given initial conditions

PO)="=p, 5,05 =N0, p7), k=1 ..., K

and using the starting momentum p or refreshed momen-
tum p' as the resulting momentum p and using the start-
ing position r as the resulting position .
3. The method according to claim 1, wherein the conser-
vative dynamics process comprises:
running a conservative dynamics simulation over a fixed
number of iterations L and obtaining new position ' and
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new momentum p', given the starting position r and the
starting momentum p of a system;

evaluating the Hamiltonian Hat position r' and momentum
p' after the conservative dynamics simulation; and

accepting or rejecting a new system configuration pro-
duced by the conservative dynamics simulation accord-
ing to a Metropolis-type function and, upon acceptance
ofthe new system configuration, using r' as the resulting
position r and p' as the resulting momentum p or, upon
rejection of the new system configuration, using the
original starting position r as the resulting position r and
keeping or negating an original starting momentum p to
give the resulting momentum p;

4. The method according to claim 1, wherein either the
momentum refreshment or the conservative dynamics pro-
cess 1s a first operation, and the resulting position r and
resulting momentum p of the first operation provides the
starting position r and starting momentum p for a second
operation.

5. The method according to claim 4, wherein the first
operation is the momentum refreshment.

6. The method according to claim 1, wherein the method is
repeated in entirety at least once.

7. The method according to claim 1, wherein the refreshed
momentum p' is accepted or rejected according to a Metropo-
lis-type function, and upon acceptance of p', using p' as the
resulting momentum p and starting position r as the resulting
position r or upon rejection of the p', using starting momen-
tum p as the resulting momentum p and starting position r as
the resulting position.

8. The method according to claim 1, wherein the momen-
tum refreshment operation constitutes multiple momentum
refreshments, in which an entire momentum refreshment
operation is repeated a selected number of times consecu-
tively, to provide a final resulting momentum, which may be
accepted or rejected accordingly to a Metropolis-type func-
tion.

9. The method according to claim 1, wherein s=(2yAt)"?,
v>0 where vy is the friction constant of DPD and L.=1, so that
a Metropolis adjusted DPD algorithm results for use in the
simulation.

10. The method according to claim 1, wherein a shadow
Hamiltonian H,, is used for evaluation, and calculated prop-
erties are re-weighted at an end of the entire method.

11. The method according to claim 10, wherein

P=(pAn
and p' is defined implicitly by
P (pi AL

where W(r, -, At) is an appropriate transformation in the
momentum vector p.

12. The method according to claim 1, wherein the gener-
ating linear differential equation is solved using the implicit
midpoint rule.

13. The method according to claim 11, wherein the
refreshed momentum p' is accepted automatically without a
Metropolis acceptance step.

14. The method according to claim 1, wherein a detailed
balance of probabilities is carried out in the conservative
dynamics process and an accepted pair of position and
momentum vectors (r, p) is obtained via a Metropolis accept/
reject test of the form
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ot ph
(r, p) ={

(rjy —p;) otherwise,

with probability min(1, exp(—B6H)

where

SH = HU", ph) - H(r, p)).

and His either a Hamiltonian or a shadow Hamiltonian.

15. The method according to claim 1, wherein a modified
detailed balance of probabilities is carried out in the conser-
vative dynamics process and the accepted pair of position and
momentum values (r, p) is obtained via a Metropolis accept/
reject test of the form

- {(rL, p*)  with probability min(1, exp(—B0H))
rop)=

(rj, —p;) otherwise
where

SH ::7—[(/“, pL) —?”l(rj, pj-

16. The method according to claim 1, wherein Newton’s
equation of motion in the conservative dynamics process is
solved using a time reversible and symplectic method

17. The method according to claims 16, wherein one of the
generalized Stérmer-Verlet method, or the standard Stormer-
Verlet method is used.

18. The method according to claim 1, wherein each con-
servative dynamics iteration includes describing forces on
particles of a thermodynamic system using a chosen force
field, integrating Newton’s equation to predict positions and
velocities at a new time and recalculation of the forces.

19. The method according to claim 1, wherein simulation
conditions provided correspond to a thermodynamic
ensemble, and

conservative, dissipative and fluctuation forces between

particles in the model are taken into consideration to
conserve Galilean invariance.

20. The method according to claim 1, comprising:

initially accepting input of simulation conditions and/or

simulation parameters, the simulation conditions
including at least one of volume, mass, temperature,
pressure, number of particles, and total energy, and

wherein the simulation parameters include at least one of a

number of repetitions of the momentum refreshment
process and conservative dynamics process, an order of
shadow Hamiltonians used, the time step in conservative
dynamics, a number of conservative dynamics itera-
tions, the starting position and momentum for a first
operation in the method, the force field parameters, a set
of position dependent Galilean invariant fanctions and
the constant s for momentum refreshment.

21. The method according to claim 1, comprising:

displaying the results on a screen or printout.

22. A method of molecular simulation of a system over
time, comprising:

modelling the system using a particle-based model in

which each particle represents a group of atoms;
carrying out the method of simulating behaviour of a ther-
modynamic system according to claim 1; and
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analyzing results obtained from the simulation and relating
the results to macroscopic level properties.

23. The method according to claim 22, comprising:

using the relationship of the results to the macroscopic
level properties to assess and optionally modify the sys-
tem at the macroscopic level, before repeating the
method on the modified system.

24. An apparatus which simulates behaviour of a thermo-

dynamic system over time, comprising:

a momentum refreshment processing part and a conserva-
tive dynamics processing part, wherein a partial momen-
tum refreshment processing part is operable, given a
starting position r and a starting momentum p of the
model, to refresh a momentum and define refreshed
momentum p' by considering solutions for p' determined
by a numerical implementation for integrating a gener-
ating linear differential equation

dr EK]VI (e
— == V(e
ds pey

déy n
dT=VrhA(V)'M P
5

k=1,... ,K,

where

V.,h, is the gradient of hy(r),

h,(r) 1s a selected Galilean-invariant, position-dependent
function

£,~N(, p~1), K=3N can be chosen arbitrarily; E=(E, . . .
)",

N is the number of particles,

N(0, p~*) denotes the normal distribution with zero mean
and variance of B,

B=1/K,T where T is temperature

0<s=m/2, and

M is the mass matrix

to seek solutions for given initial conditions

POy=p"=p, 5,005, 7=NOB™), k=1... X

and using the starting momentum p or refreshed momen-
tum p' as the resulting momentum p and using the start-
ing position r as the resulting position r.

25. A computer-readable recording medium storing a com-
puter program which, when executed on a processor, carries
out an operation including simulating behaviour of a thermo-
dynamic system over time, comprising:
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executing a momentum refreshment process and a conser-
vative dynamics process, the momentum refreshment
process including:
defining a refreshed momentum by partially refreshing a
momentum in accordance with a starting position and
a starting momentum of a model; and
using the starting momentum or the refreshed momentum
as a resulting momentum and using the starting position
as a resulting position
26. The computer-readable recording medium according to
claim 25, wherein a starting position r and a starting momen-
tum p of the model is provided, the partially refreshing of the
momentum defines refreshed momentum p' by considering
solutions for p' determined by a numerical implementation
for integrating a generating linear differential equation

dp _ KVh .
%—_; rx(r/'gka

dé,
2 v M,
ds

k=1,.. ,K,

where

V L, is the gradient of h,(r),

h,(r) is a selected Galilean-invariant, position-dependent
function

£,~N(©, ), K=3N can be chosen arbitrarily; E=(E1 . . .
5%

o

N is the number of particles,

N (0, p~") denotes the normal distribution with zero mean
and variance of f~*,

p=1/KzT where T is temperature

O<s=m/2, and

M is the mass matrix

to seek solutions for given initial conditions

p0)y=p=p, E, (05 =NOL ), k=1...K

and using the starting momentum p or refreshed momen-
tum p' as the resulting momentum p and using the start-
ing position r as the resulting position r.

27. The method according to claim 1, wherein the partially
refreshing momentum is carried out by considering solutions
for a starting momentum determined by a numerical imple-
mentation for integrating a generating linear differential
equation.
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