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ABSTRACT

A computer-implemented method of simulating behaviour of
a thermodynamic system over time, the thermodynamic sys-

tem

having potential energy that can be split into more

quickly varying parts and more slowly varying parts and
having a state described by collective vectors of position and
momentum at any given time, the method comprising a
momentum refreshment process and a conservative dynamics
process, wherein

the momentum refreshment process comprises carrying

out an operation of mixing the collective momentum
vector with a noise vector and carrying out an accep-
tance/rejection operation;

the conservative dynamics process comprises applying a

multiple time stepping conservative dynamics operation
to a current state, in which operation calculations for
forces corresponding to more slowly varying energy
parts in the thermodynamic system undergo an averag-
ing procedure and are carried out at a larger time step
than calculations for forces corresponding to more
quickly varying energy parts; and carrying out an accep-
tance/rejection operation; wherein

the acceptance/rejection operations are based on an

approximation of the system energy expressed using
shadow Hamiltonians and comprise accepting a current
state or returning a replacement state.
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METHOD, APPARATUS AND COMPUTER
PROGRAM FOR MULTIPLE TIME STEPPING
SIMULATION OF A THERMODYNAMIC
SYSTEM USING SHADOW HAMILTONIANS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the ben-
efit of priority from European Patent Application No.
09165102.6 filed on Jul. 9, 2009, the entire contents of which
are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to simulation of ther-
modynamic systems. In such simulations, physical character-
istics and changes in the system can be modelled. The inven-
tion has applications in the modelling of physical, chemical
and biological systems in particular. For example, embodi-
ments of the invention can use an atomistic model to represent
simple, complex and even extremely large biomolecular sys-
tems such as whole viruses. There are many applications for
such simulation, for example in biosciences, material sci-
ences and in public health and medicine.

BACKGROUND OF THE INVENTION

[0003] Molecular dynamics (MD) is a useful technique for
theoretical investigation of molecular systems such as biomo-
lecular systems and other macromolecular systems. A pri-
mary limitation in the application of MD to the study of
complex processes involving macromolecules, e.g. biomol-
ecules, is the small time step size of conventional MD.
Whereas the latter is typically measured in femtoseconds,
some dynamical processes of interest happen in microsec-
onds and longer time scales. Bridging the time scale gap
between simulations and the phenomena of interest has been
an area of active research for more than a decade. A variety of
techniques have been introduced in order to increase the time
step in molecular dynamics simulations.

[0004] One common approach is to constrain bond lengths
using either the SHAKE (Ryckaert et al., 1977) or RATTLE
(Anderson, 1983) algorithms. Although application of these
methods allows for a modest (~ a factor of 2) increase in the
time step, time-dependent quantities may be affected. Addi-
tionally, the constraint methods have not been shown to work
well for bond angle degrees of freedom when applied to the
case of macromolecules (van Gunsteren et al., 1982).

[0005] An additional complication is that biological and
some other complex systems are multi-scale in nature. For
example, the dynamics of proteins contain motions over dif-
ferent time scales, from atomic vibrations in the order of
femtoseconds to collective motions at millisecond scales.
FIG. 1 depicts the dynamics of molecules such as protein
molecules, to illustrate the variation in time scales.

[0006] Traditional time stepping integrators (e.g. Verlet)
commonly used in molecular dynamics (MD) are not able to
address this time scale problem. A typical time-step for these
methods is 1 femtosecond. This makes atomistic simulation
of biomolecules computationally extremely expensive.
Multi-scale numerical methods, in which the presence of fast
scales does not affect the time integration of slow scales, are
urgently needed for efficient simulation of large biomolecular
systems. Such approaches, in theory, can essentially enhance
performance of molecular simulation since the most compu-
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tationally expensive long-range electrostatic interactions
contribute to the dynamics on relatively long time scales
(compared with internal vibrations) and thus ideally do not
need to be calculated frequently. Also, such approaches
enhance the data locality which makes them better suited for
implementation on parallel computers than traditional MD
schemes.

[0007] One approach is to separate the dynamics into fast,
uninteresting modes, and slow, functionally relevant modes
and perform MD in the reduced space. Among the most
popular approaches to find reduced dynamical spaces for
biomolecules are normal mode analysis (NMA) (Levittetal.,
1985) and principal component analysis (PCA) (Balsera et
al., 1996). Those methods have been combined with various
computational schemes (e.g. LIN (Zhang et al., 1993), ACM
(Zhang et al., 2003), LLMOD (Kolossvary et al., 2001), SMD
(Space et al., 1993), NML (Sweet et al., 2008)) to yield
simulation techniques which, in fact, have not succeeded in
either providing the desired accuracy or in achieving substan-
tial computational speed-up (Sweet et al., 2008) for atomistic
simulation of macromolecules.

[0008] Otherwork has attempted to build multiple time step
(MTS) integrators for MD that allow for time steps of differ-
ing lengths according to how rapidly a given type of interac-
tion is evolving in time. The prototypical algorithm is the
Verlet-1/r-RESPA/Impulse integrator (Grubmiiller et al.,
1991; Humphreys et al., 1994), which splits the forces into
fast (short-range) and slow (long-range) components and
evaluates the former more frequently than the latter. The ratio
between frequencies of evaluation of the long-range forces
(outer step-size) and short-range forces (inner step-size) mea-
sures the gain in simulation time and will be further referred
to as “the step-size ratio”.

[0009] FIG. 2 is adiagramatic explanation of the M TS idea,
which splits the forces in a system into bonded “fast” forces
and long range non bonded “slow” forces (which tend to be
non-linear), evaluating the slow forces less frequently. For
this, multiple timestepping integrators are required to solve
modified ODEs (Ordinary Differential Equations).

[0010] For biomolecular applications, the computational
complexity of the fast short-range force evaluations scales
linearly in the number of atoms in the system, N, while it
scales quadratically in N for the slow long-range force evalu-
ations. Furthermore, while the short-range fast forces are easy
to compute in parallel, long-range slow forces require global
data communication and hence are more difficult to parallel-
ize efficiently. Therefore, in theory, MTS methods can dra-
matically speed up MD simulations by reducing the number
of expensive slow force evaluations.

[0011] Although in theory MTS methods can dramatically
speed up MD simulations by reducing the number of expen-
sive slow force evaluations, in practice, however, impulse
MTS methods such as the popular Verlet-1/r-RESPA suffer
from severe resonance instabilities that limit practical perfor-
mance gain (Ma et al., 2003; Izaguirre et al.,, 2001). For
solvated biomolecular systems, for example, the stability
limit means that the “the step-size ratio” becomes equal to ~4.
Performance of impulse MTS methods was recently
improved in the Langevin stabilized MTS methods (Izaguirre
et al., 2001) by reducing resonance induced instabilities
through the introduction of mollified MTS methods by Iza-
guirre et al., 1999 and weak coupling to a stochastic heat bath
(Langevin dynamics) (Izaguirre et al., 2001) to weaken non-
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linear instabilities. This allowed an increase of the step-size
ratio to 6-12 for solvated biomolecular systems (Izaguirre et
al., 1999, 2001).

[0012] In addition to the limitations which are specific to
each listed method, all those methods have a common draw-
back—they do not exactly sample from the target temperature
even if the simulations are stable and are subject to a thermo-
stat (Pastor et al., 1988; Bond and Leimkuhler, 2007). This
error can be controlled with a loss of computational efficiency
by increasing the frequency of slow force updates.

[0013] Itis desirable to provide a method and apparatus for
simulation which overcome or at least mitigate some of the
disadvantages of the prior art.

Statements of the Invention

[0014] Embodiments of the invention provide a computer-
implemented method of simulating behaviour of a thermody-
namic system over time, the thermodynamic system having
potential energy that can be split into more quickly varying
parts and more slowly varying parts and having a state
described by collective vectors of position and momentum at
any given time, the method comprising a momentum refresh-
ment process and a conservative dynamics process, wherein
the momentum refreshment process comprises carrying out
an operation of mixing the collective momentum vector with
anoise vector and carrying out an acceptance/rejection opera-
tion; the conservative dynamics process comprises applying a
multiple time stepping conservative dynamics operation to a
current state, in which operation calculations for forces cor-
responding to more slowly varying energy parts in the ther-
modynamic system undergo an averaging procedure and are
carried out at a larger time step than calculations for forces
corresponding to more quickly varying energy parts; and
carrying out an acceptance/rejection operation; and wherein
the acceptance/rejection operations are based on an approxi-
mation of the system energy expressed using shadow Hamil-
tonians and comprise accepting a current state or returning a
replacement state.
[0015] The inventors have developed a novel method for
constant temperature molecular simulation of large systems,
embodiments of which take can advantage of the multi-scale
nature of the simulated systems and remove or at least miti-
gate some of the bottlenecks of existing multi-scale methods.
[0016] Embodiments of the new method are referred to
herein as MTS-GSHMC (in which GSHMC stands for Gen-
eralized Shadow Hybrid Monte Carlo) and can provide accu-
rate reproduction of thermodynamic and dynamical proper-
ties; exact temperature control during simulation; and
computational robustness and efficiency.
[0017] More specifically, embodiments of the invention
allow use of a newly developed technique for approximating
system potential energy H, known as the Hamiltonian, in a
simulation with MTS, preferably by using shadow Hamilto-
nians, which are truncated or otherwise approximated ver-
sions of the expression for potential energy, thus improving
performance of the method. The embodiments use the prin-
ciples of a simulation method not previously thought suitable
for MTS, known as the GSHMC method (Akhmatskaya &
Reich, 2008).
[0018] In more detail, embodiments of the invention can:

[0019] 1. enable efficient detailed atomistic simulations

of extremely large macromolecular systems;
[0020] 2. offer the following advantages over existing
MTS implementations:
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[0021] stability: MTS-GSHMC does not suffer from
resonance or non-resonance induced instabilities;

[0022] accuracy: MTS-GSHMC rigorously samples
from the constant temperature ensemble;

[0023] efficiency: MTS-GSHMC is able to reduce the
frequency of calculation of expensive slow forces by
a factor of ~20 compared with traditional MD meth-
ods and by a factor of ~2 over the best performing
MTS approaches;

[0024] applicability: MTS-GSHMC will be consider-
ably more efficient than standard techniques when
applied to a wide range of atomistic models: from very
simple ones to extremely large biomolecular systems
(e.g. whole viruses). The results would be a valuable
contribution in materials science and biosciences and
will eventually contribute to public health and medicine;

[0025] suitability to massively parallel computing.

[0026] In addition, MTS-GSHMC reduces the computa-
tional cost of the MD part by a factor of 2 compared with
related costs in the comparable in-house related art process
without shadow Hamiltonians, which is known as MTS-
GHMC and is the subject of a co-pending European applica-
tion with the same applicant and inventors, entitled “A
Method, Apparatus and Computer Program for Multiple
Time Stepping simulation of a Thermodynamic System” with
agent reference P113088EP00. The co-pending application is
hereby incorporated by reference. MTS-GSHMC improves
the achievable effective step-size ratios observed in MTS-
GHMC by a factor of 1.4; and provides efficient sampling in
simulation of complex systems.

[0027] We have found that the acceptance rate in the
molecular dynamics part of MTS-GHMC quickly deterio-
rates for large outer time-steps (i.e., the equivalent of 16 to 20
fs for solvated biomolecular systems). Shadow Hamiltonians
can be used to address this issue.

[0028] A key factor in the development of invention
embodiments is the derivation of shadow Hamiltonians for
the mollified MTS methods of [zaguirre et al., 1999. This step
is necessary since the shadow Hamiltonians previously used,
for example in Akhmatskaya and Reich, 2008, are specific to
the single time-step Stérmer-Verlet method. To overcome this
limitation, the inventors utilised and modified a highly effi-
cient method for evaluating shadow Hamiltonians as pro-
posed by Skeel and Hardy, 2001 for symplectic splitting
methods (Hairer et al., 2002; Leimkuhler and Reich, 2005).
Due to the multi-scale nature of MTS methods, a substantial
modification of the approach of Skeel and Hardy, 2001 was
required to make it applicable to the MTS-GHMC method of
Reich and Akhmatskaya, 2009.

[0029] Preferably, the conservative dynamics process uses
a mollified impulse method for stability improvement, for
example using a process in which an averaging operator A is
applied to a collective position vector X and derives mollified
potential energy U,,, , ZySZOW related to the more slowly varying
potential energy energy, to yield more slowly varying molli-
fied forcesF,,, HySZOW, and preferably wherein calculated prop-
erties are re-weighted at the end of the entire method, to allow
for the use of the mollified terms and shadow Hamiltonians.

[0030] Advantageously, the mollified multiple time step-
ping method applies the operator A to the collective position
vector X and derives the mollified potential energy U, HySZOW
related to the more slowly varying potential energy to yield
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slow

more slowly varying forces mollified forces F,,,;,> ",

wherein:

dZ
Moz X0 =
L pL
Z 6 (1 — mADFS (X (1) + Z 618, (1 — nSOFF (X (1)),
m=0 n=0

for t€]0, t'=LAt] with the slow forces defined by

Frnony” (0= Uy, (=4 ) TF(A(X)),

where M is a diagonal mass matrix of atomic masses, A (X)
denotes the Jacobian matrix of partial derivatives, the larger
time-step for more slowly varying forces F¥°* is At, the
smaller time-step for more quickly varying forces F*** is dt,
8 is the Dirac delta function, ¢,,=d,=1 except when m=n=0
or m=L, n=pL, respectively, in which case c,=d, =", integer
p>1, and L>0 is a given integer.

[0031] Either the momentum refreshment or the conserva-
tive dynamics process is the first process of the method, and
the resulting state of any process in the method preferably
provides the current state for the next process in the method.
[0032] Advantageously, the acceptance/rejection operation
following the mixing operation returns the resulting state of
the mixing operation in the case of acceptance and the state
before the mixing operation as the replacement state in the
case of rejection; and the acceptance/rejection operation fol-
lowing the conservative dynamics operation returns the
resulting state of the conservative dynamics operation in the
case of acceptance; and, in the case of rejection, the state
before the conservative dynamics operation is either returned
as the replacement state or undergoes a momentum flip to
provide the replacement state.

[0033] Preferably the momentum refreshment process and/
or the conservative dynamics process constitutes a multiple
iteration process, in which the entire process is repeated a
selected number of times consecutively, to provide a final
resulting state, which may be used as a current state for the
next process. Usually, the method as a whole is also repeated,
for example so that the results of the acceptance/rejection
operation in the conservative dynamics process are fed into
the momentum refreshment process in a further iteration of
the method.

[0034] Any suitable methodology can be used for combin-
ing the collective momentum vector with a noise vector in the
momentum refreshment process. In one suitable method, the
states in the method may be denoted by Q,=(Y,%,t,)%,i=0, . . .
,1, where L is a given integer, Y,=(X,7,1,P,7,b,)*, X, a collec-
tive vector of atomic positions, P, is a collective vector of
atomic momenta, b, is a scalar, and t, is time and wherein the
mixing operation comprises: given a current state, mixing its
collective atomic momentum vector P, with an independent
and identically distributed normal noise vector =, of dimen-
sion 3N, so that

Pi=cos(@)Psin(@)Z;,

E;=cos(§)Z,~sin($)7;,

where iis a given integer, N is the number of particles in the
system, 0<¢p=mn/2 is a given angle, Z,~N[0,M~*, N[0, M]
denotes the (3N)-dimensional normal distribution with zero
mean and covariance matrix fm™", M is the diagonal mass
matrix of the molecular system, and f=1/k;T is the inverse
temperature, the proposed state vector being denoted by €,=(
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¥i,ﬁ)T , ¥ ~(X,51,R,%b)7; and preferably wherein the subse-
quent acceptance/rejection operation comprises obtaining the
resulting state Q,; through a Metropolis accept/reject crite-

rion:

a - {Q- with probability min(1, exp(— SAHS,)

Q; otherwise,

with

e . _ ) = =R . p. 1':*T =)
AHE, 1= Ha(Xi, P+ 58 M7'Si = Ha(Xi, P = 5E] M7'E;,

in which H,, is the shadow Hamiltonian and AH,, is the
change in shadow Hamiltonian due to the mixing operation.
[0035] Turning to the conservative dynamics process, each
iteration of the process will usually include describing the
forces of the atoms of the molecules of the molecular system
using the chosen force field, integrating Newton’s equation to
predict the positions and velocities and recalculation of the
forces.

[0036] The multiple time stepping method is carried out so
that the calculations for more quickly varying forces (usually
those relating to forces over a shorter distance range) are
carried out more frequently than calculations for more slowly
varying forces.

[0037] Theconservative dynamics operation may comprise
applying the multiple time stepping method to the current
state Q* ~(Y,%t)7 with Y~(X,%,1,P,",b,)” using a time-re-
versible and volume conserving mapping li’t, with the pro-
posed state being defined by:

Q=(FT1+LADT, with =¥ (T

witht=AtL and given integer L.=1; and the subsequent accep-
tance/rejection operation may comprise obtaining the result-
ing state €2, ,, through a Metropolis accept/reject criterion:

T+

{ € with probability min(1, exp(— SAH,))
Qi =

Q5 otherwise,

with

AHy, = Hy(X;, ) - Hu(X:, P,

in which H,, is the shadow Hamiltonian and AH,, is the
change in shadow Hamiltonian due to the conservative
dynamics operation; and in which Q=Y ,.t)%,
Y- ~X,%1,-P,7b,)%, Q,*- denotes either Q,” or Q,* and 3,~
indicates applying a momentum flip to the state 2, and Q,*=
Q, and indicates that no momentum flip is applied.

[0038] Any suitable approximation truncation for the
Hamiltonian can be used as the shadow Hamiltonian. Prefer-

ably, the shadow Hamiltonian used can be expressed as:

HAt[q] = HAt[q] LMIS_ HAt[q] LMIS fast Hat[q] S Vﬂst,

in which H, 975 denotes the q th order shadow Hamilto-
nian for an MTS method, H, [-75/% denotes the q th order
shadow Hamiltonian for the same MTS method with the more
slowly varying forces F**°* set equal to zero and H 197/
denotes the q th order shadow Hamiltonian for a Stormer-
Verlet method applied to the more quickly varying forces in
the system, with step-size dt.
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[0039] In order to use the method on a computer, initial
conditions or parameters need to be input manually or auto-
matically. Thus the method may further comprise a step of
initially accepting input of simulation conditions, wherein the
simulation conditions include at least one of volume, mass,
temperature, pressure, number of particles, and total energy;
and/or further comprising a step of initially accepting input of
simulation parameters, wherein the simulation parameters
include at least one of a number of repetitions of the momen-
tum refreshment process and a number of repetitions of the
conservative dynamics process, the larger and smaller time
step in conservative dynamics, the number of iterations of the
entire method, the current state for the first step in the method,
the force field parameters, a time-reversible and volume con-
serving mapping W, and a constant angle ¢, where 0<¢=m/2.
[0040] At the end of the method, the results may be dis-
played on a screen or printout.

[0041] To put the method into the context of the full simu-
lation, a method of molecular simulation of a system over
time can be provided, comprising:

[0042] modelling the system using an atomistic model;
[0043] carrying out the method of simulating behaviour of
a thermodynamic system according to any of the preceding
claims; and

[0044] analysing the results obtained from the simulation
and relating them to macroscopic level properties.

[0045] Embodiments of another aspect of the invention
provide an apparatus which simulates behaviour of a thermo-
dynamic system over time, the thermodynamic system hav-
ing potential energy that can be split into more quickly vary-
ing parts and more slowly varying parts and having a state
described by collective vectors of position and momentum at
any given time; the apparatus comprising:

[0046] a momentum refreshment part operable to carry
out an operation of mixing the collective momentum
vector with a noise vector and an acceptance/rejection
operation;

[0047] a conservative dynamics part operable to apply a
multiple time stepping conservative dynamics operation
to a current state, in which operation calculations for
forces corresponding to more slowly varying energy
parts in the thermodynamic system undergo an averag-
ing procedure and are carried out at a larger time step
than calculations for forces corresponding to more
quickly varying energy parts; and to carry out an accep-
tance/rejection operation; wherein

[0048] the acceptance/rejection operations are based on
an approximation of the system energy expressed using
shadow Hamiltonians and comprise accepting a current
state or returning a replacement state.

[0049] The preferred features of the above method state-
ments are also applicable to this apparatus aspect and to the
following computer program aspect.

[0050] Inany ofthe above aspects, the various features may
be implemented in hardware, or as software modules running
0N One Of More Processors.

[0051] The method is preferably carried out by a computer
or computer network, the specification and arrangement of
such computing functionality being well known to a person
skilled in the art of molecular simulation.

[0052] The invention thus also provides a computer pro-
gram or a computer program product for carrying out any of
the methods described herein, and a computer readable
medium having stored thereon a program for carrying out any
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of the methods described herein. A computer program
embodying the invention may be stored on a computer-read-
able medium, or it could, for example, be in the form of a
signal such as a downloadable data signal provided from an
Internet website, or it could be in any other form.

[0053] The present invention can be implemented to give
many advantages over the prior art methods for simulating
multi-scale systems, for example over a range of thermody-
namic ensembles such as NPT and NVT ensembles.

[0054] General features of the prior art and preferred fea-
tures of the present invention will now be described, purely by
way of example, with reference to the accompanying draw-
ings, in which:

[0055] FIG. 1 depicts the dynamics of molecules such as
protein molecules;

[0056] FIG.2isadiagramatic explanation of the MTS idea;

[0057] FIG. 3 is a flowchart showing a general embodiment
of the invention;

[0058] FIG. 4 is a graph of numerical H against effective
outer step size for MTS-LD and MTS-GSHMC; and

[0059] FIG. 5is a graph of the autocorrelation functions of
diatomic centre of mass velocities for MTS-GSHMC as a
function of the outer time-step At.

[0060] Embodiments of the invention combine an MTS
method with Monte Carlo methodology and shadow Hamil-
tonians. It is a well-known problem of hybrid, Monte Carlo
(HMC) and generalized hybrid Monte Carlo (GHMC) meth-
ods that the acceptance rate of the molecular dynamics pro-
posal step deteriorates with increasing time-steps and
increasing system sizes (Kennedy and Pendleton, 2001). One
option to counteract this effect is to apply higher-order sym-
plectic time-stepping methods. However this also increases
the computational cost of HMC/GHMC. An alternative, less
expensive approach has been proposed by Izaguirre and
Hampton, 2004 for HMC and by Akhrnatskaya and Reich,
2006, 2008 for GHMC and is based on the concept of modi-
fied/shadow Hamiltonians for symplectic time-stepping
methods. The key observation is that symplectic time-step-
ping methods (see Hairer et al., 2002; Leimkuhler and Reich,
2005 for an introduction to sympletic methods and modified
equation analysis) conserve modified/shadow Hamiltonians/
energy to much higher accuracy than the accuracy of the
method itself. This suggests to implement HMC/GHMC in
the framework of importance sampling with respect to such
shadow Hamiltonians. The feasibility of the generalized
shadow hybrid Monte Carlo (GSHMC) approach (Akh-
matskaya and Reich, 2008) for large biomolecular systems
has been demonstrated by Wee et al., 2008.

[0061] FIG. 3 shows a general embodiment of the invention
in which a momentum refreshment process is followed by an
MTS conservative dynamics process. The method may be
repeated so that the results of the conservative dynamics
process are fed back into the start of the momentum refresh-
ment process. Each of the two processes involves an accep-
tance/rejection operation using shadow Hamiltonians. In
more detail, for the momentum refreshment process, the
momentum only of the current state is refreshed and the
results are tested. If the changes are rejected the system
returns to the start state or current state before the momentum
refreshment operation. There follows a conservative dynam-
ics operation whose results again are accepted or rejected. If
the results are rejected, the results of the momentum refresh-
ment process are returned or these results are subjected to a
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momentum flip to form the returned state. Otherwise, for
acceptance, the results of the conservative dynamics opera-
tion are applied.

[0062] To be able to extend GSHMC to MTS-methods
using Monte Carlo methodology we need to establish easily
computable shadow Hamiltonians for the mollified MTS
methods of Izaguirre et al., 1999. In the remainder of this
section, we describe the key construct proposed by Skeel and
Hardy, 2001.

[0063] The molecular dynamics (MD) proposal step of
HMC/GHMC requires the solution of Newton’s equations of
motion for a classical unconstrained simulation

MX=-VU(X), (6]

where M is the diagonal mass matrix of atomic masses, X is
the collective atomic position vector, X denotes its second
time derivative, and U is the potential energy. Newton’s equa-
tions of motion (1) can be put into the Hamiltonian dynamics
framework by introducing the collective atomic momentum
vector P=MX and the Hamiltonian (energy)

H(X,P)= %PTM’1P+ UX). @

[0064] The associated canonical Hamiltonian equations of
motion are given by

X=V, HX.P)=M"'P, P=-V H(X,P)=-VUX). ©)
[0065] We assume that there are N atoms and, hence,
X,PERY.

[0066] Following Skeel and Hardy, 2001, we define the
homogeneous of degree two extension of a Hamiltonian H(X,
P) by

H(X,a,Pby=a’H(a ‘X,a™'P), )
where aER and bER are two additional degrees of freedom.
The associated extended state variable is defined by Y=(X7,

a,PT b)"ER*™? and its extended Hamiltonian dynamics is
defined by

K=V, H-M P ®)
=V, H(»)=0, (6)
P=-VdH(y)=—aVU(aX), Y
b=-V_Hy)=X'VU(a ' X)-2aU(a' X). (8)
[0067] Recall that Y* denotes the transpose of a vector Y,

i.e., Y% is a row vector if Y is a column vector and vice versa.
The Hamiltonian H(Y) is called homogeneous of degree two
since o°H(Y)=H(cY) for any scale factor c€R and for all
extended states Y.

[0068] Since 4=0, we may set a=1 and obtain the simplified
equations of motion

X=M"P, P=—VUX), 5=XTVUX)-2U(X). (©)

[0069] Let Y(tO)=X1)%,1,P(1)7,b(t)") denote a solution of
(9). A key result of Skeel and Hardy, 2001 states that

1.7 o7 - 0
HX @, Pu) = 5{X0) P0 - P0) X -bw)

1. 7
=5 YW I,
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which, using (9), is easy to verify. Here J is the skew-sym-
metric matrix

B [ Osver Dans } o RSN 2N an

—hye1 Osysn

and 1, , denotes the identity matrix of dimension 3N+1, N
the number of atoms.

[0070] Another important observation is that the above
arguments hold true for any Hamiltonian H(X,P) and in par-
ticular for the modified Hamiltonians H, (X,P) of a symplec-
tic time-stepping method, which defines a mapping

L =Wadl,

I'=(X%,PH)’&R". See Hairer et al., 2002; Leimkuhler and
Reich, 2005 for an introduction to symplectic time-stepping
methods and modified equation analysis for such methods.
Modified Hamiltonians are defined such that they are con-
served to an order in the step-size At which is higher than the
order of the method itself. Recursive formulas for computing
modified Hamiltonians are known; but are typically not
viable for practical computations (Hairer et al., 2002;
Leimkuhler and Reich, 2005). The homogeneous embedding
approach on the other hand allows for a relatively simple
computation of modified Hamiltonians along numerical tra-
jectories.

[0071] Details of the construction will be provided later.
Here we only outline the basic idea. Let W/, , denote the natural
extension of a symplectic time-stepping method (12) to the
extended system (9), i.e.,

Yo
[0072] LetII(t) denote an interpolation polynomial of order

2k , k>0, through discrete solution points Y,,, n=-k, ... ,0, . .
. ,+k . Then we define a modified energy value at t=t, by

=P (1), a3)

1. 71 (14)
Hy(Xo, Po) = EH([) JT(),

with skew-symmetric matrix J defined by (11) and Y,~=(X,%,
1,P,7,0)". The accuracy of the modified Hamiltonian
increases with the number of time-steps 2k>0. With k=1 one
can achieve fourth-order while k=2 leads to an eighth-order
modified Hamiltonian in At.

Shadow Hamiltonians for Multiple-Time-Stepping
Methods

Homogeneous Embedding of Mollified MTS Method

[0073] The potential energy U is typically formed from a
combination of bonded and nonbonded potential energy
([Jbonded+Unonbonded) where

U=Uponded [ yronbonded (14A)
ponded—y ppond , p pungle , [ plihedral  jimproper (14B)

ren bonded _ ULeonard—Jon esy Ueleczrostan cs , ( 1 4C)
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[0074] Let r;Z0 denote the distance between atom i and
atom j. The switching function S serves to split non-bonded

interactions into slow and fast parts. It is defined by

0 if 1y > Fewofr » (14D)

1 if ryj < Fons
S =9 2.2 2 a2
(Futor = Tii) Feutoge + 275 = 375,)

) if Fon < i = Fewtofr»
cutoff on

for given cutoff radius r,,, ~and transition interval defined by
[£0,5 curopl - Given a potential energy U with entries defined by
(14A)-(14C) we now define the “fast” potential by

Uper= [jponded,, [ pronbonded (14E)

and the slow contribution by

[}slow: l}nonbonded_ [}nonbondedS. (141:)

[0075] Letus assume that a splitting of the potential energy
U(X) into fast and slow contributions is given, i.e.

UOO=U= 0+ U (X). 15
[0076] We also assume an operator

X=4X) (16)

which assigns a filtered, averaged position X to an instanta-
neous collective atomic position vector X. The averaging
operator may then be applied to the slow potential to yield a
mollified slow potential in embodiments for which mollified
potential energies are used.

Upory,”™ ™ O=U(4(X)). an

[0077] The following sections referred to mollified poten-
tial energies but the skilled reader will appreciate that corre-
sponding expressions apply for systems where mollification
is not used, mutatis mutandis.

[0078] Givenan integer p>1 such that the outer time-step At
and the inner time-step Ot satisfy At=pdt, the mollified
impulse MTS method of Izaguirre et al., 1999 is now given by

d4? (18)
M X0 =
L pL
Z LS (1 - mADFS (X (1) + Z dad16:(1 — RSN FFS (X (1),
m=0 n=0

for t€]0,'=LAt] with the slow forces defined by
Frnotty™ ™ 0=V U, 011, (X0 =A 4 X) F(A(X)), 19)

where A (X) denotes the Jacobian matrix of partial deriva-
tives, P*(X)=-VU/*(X), and 8, denotes the Dirac delta
function. The coefficients c,, and d,, are defined by c,,=d, =1
except when m=n=0 or m=L, n=pL, respectively, in which
case c,=d,="> Appendix A gives a numerical solution for

(18).
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[0079] One notes that (18) can be viewed as a standard
impulse MTS method applied to a “mollified” molecular
system defined by the energy functional

(19B)

— l T a1 fast slow
Houty(T) = 5 PP M7 P+ UM (X) + Upopy (X).

[0080] We now describe the homogeneous extension of the
mollified MTS methods (18). As already discussed, we intro-
duce an additional variable b and the extended mollified MTS
methods can be expressed compactly as follows:

&£ (20)
M= X0 =
L pL
Z I8 (1 - mADFSSY (X (1) + Z 816, (1 — ndDFFS' (X (1),
m=0 n=0
4 L 20
b= —;) I8 (1 = mANX (O Fooit (X (1)) + 22U (X ()] -

pL
D 18,1 = DX (O FF (X (1) + 205 (X (1))
n=0

[0081] Notethat (20)is identical to (18) and that (18) can be
integrated exactly. (21) can also be integrated exactly once
X(t) has been determined from (20). Hence (20)-(21) define a
one-step method in Y=(X7,1,P%,b)?, which we denote by

Y =0T, (22)
[0082] Finally note that (21) corresponds to (8).
[0083] We nextdescribe the computation of shadow Hamil-

tonians for MTS methods using the extended time-stepping
method (22).

Skeel & Hardy Construction of 4th and 8th Order Shadow
Hamiltonians

[0084] Once an appropriate extension of a symplectic time-
stepping method has been formulated, Skeel and Hardy, 2001
provide a straightforward approach for evaluating higher-
order shadow Hamiltonians. Here we only summarize the
final formulas for fourth and eighth order shadow Hamilto-
nians.

[0085] Assume that we wish to determine the value of the
shadow Hamiltonian about Y,=(X,%,1,P,,b,)". Then k=1
(fourth-order) or k=2 (eighth-order) time-steps forward and
backward in time are performed with (22) (unless those steps
have already been performed as part of the simulation). Hence
we have 2k+1 discrete approximations Y, j=i-k, . . . ,i, . ..
L1i+k, centered about V, available and, for k=2, we define

Ao =Y, 23
1 (24)

Al = E(YHI =Yi-1),

A =Y -2Yi+ Yy, (25)
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-continued

1 26)

Az = 5 [¥iv2 = 2Vi +2¥iy = Yinals
A=Y -4 +6Y; -4Y  +Y o, (27)

as well as
1 (28)
_ T _
A = 5 A A Lm =0, .. 4,

with the skew-symmetric matrix J defined by (11). In case of
k=1 we need only to compute A,,A,A, and A, , for m,1=0, ..
2.

[0086] The fourth-order shadow Hamiltonian atY; is now
defined by
1 29
HEMTS (X, P = Aro - zAn @9
and the eighth-order shadow Hamiltonian by
HEY (X, Py = (30)
A ZA 5 A 13 A 19 A 1 A
10~ 5 12+ﬁ 30+ﬁ 327 Syp A T e

respectively.

Shadow Hamiltonians for the MTS-GSHMC Method
According to Preferred Embodiments

[0087] Skeel and Hardy, 2001 use the homogeneous
embedding approach to develop shadow Hamiltonians for the
Stérmer-Verlet method and these shadow Hamiltonians have
been implemented in the shadow hybrid Monte Carlo
(SHMC) method of Izaguirre and Hampton, 2004.

[0088] An initial application of (29) to an MTS method
with Monte Carlo methodology such as the MTS-GHMC
method in the co-pending application led however, to an
unsatisfactory behavior of the resulting shadow MTS-
GSHMC method. While the acceptance rate in the MDMC
part increased as expected, a large drift in kinetic energy was
observed in the course of the Monte Carlo simulation. An
explanation for this phenomenon is that the shadow Hamil-
tonian H, 7% is nearly conserved along numerical trajec-
tories under the MDMC step but, at the same time, it is found
that the difference between the original Hamiltonian H and
the shadow Hamiltonian H,,™% becomes large as
momenta P get refreshed under the PMMC part of the MTS-
GSHMC method.

[0089] To overcome this large drift in the shadow Hamil-
tonian H,,**7* the inventors investigated an alternative
derivation of shadow Hamiltonians from the standard BCH-
formula for splitting methods (Hairer et al., 2002; Leimkuhler
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and Reich, 2005). The associated fourth-order shadow
Hamiltonian is given by

ot BD
HK:] —H- ﬁ[(Ffaxr)TM—lFfaxr _ ZPTM—IUXf;zer—IP] _
A fast\T 4 g—1 pslow T ag—L 1 siow -1
ﬁ[(Fmolly + 2PN MR G, = 2P M (UR) o M ] +
ot Ar*).

[0090] Here U, denotes the Hessian matrix of second-
order partial derivatives of a scalar-valued function U. We
note that (31) is the sum of the original Hamiltonian plus the
corrections from a Stdrmer-Verlet method applied to the fast
and slow systems alone plus a mixed term

AP T Lo
_E( fasty" 1Fm€lly'

Next we write (31) in the equivalent form (up to higher order
terms in 3t and At)

(32

1 A2
HK:] _ Hg},sv,fasr + HK:],sv,mw _ EPTM—IP_ H(1.,~fasr)TM,1I,Tfn%,lwly_

[0091] Here Hy ™"/ denotes a fourth-order shadow
Hamiltonian for a Stormer-Verlet integration of the fast sys-
tem with Hamiltonian H**=P"M~'P/2+V**(X) and step-
size dt. Similarly, H, [*-*"="" denotes a fourth-order shadow
Hamiltonian for a Stérmer-Verlet integration of the slow sys-
tem with Hamiltonian H¥*=P"M™'P/2+V,, HySZOWO() and
step-size At. Explicit formulas for Hg =774 and H, [*-57
stow can be found in Appendix B and follow from the results
stated in Skeel and Hardy, 2001 for the standard Stdrmer-
Verlet method. Alternatively, one could use the shadow
Hamiltonians proposed in Akhmatskaya and Reich, 2008.

[0092] We further note that

33

1 AP
HK:],SV,SIGW _ EPTM—IP _ E(Ff‘”’)TM’l F,Z’Z;,”y _

HK:],MTS _ HE],MTS,faxr + 001, A,

where H, #7572 denotes the fourth-order shadow Hamil-
tonian (29) for the MTS method (18) with F,,,,, 0. Hence,
we finally propose the following fourth-order shadow Hamil-
tonian

Hy A=, JOMTS_p, [AMTS fasty p 41,5V fast, (34)

[0093] We used this shadow Hamiltonian in the numerical
experiments provided later. The key observation is that (34)
contains approximations on both time-step levels (outer and
inner) while (29) relies on the outer time-step At only.

[0094] We now generalize (34) to arbitrary order. Let H,,
[41MTS denote the q th order shadow Hamiltonian for a MTS
method according to the construction of Skeel and Hardy,
2001. Let H, 1275725 denote the q th order shadow Hamil-
tonian for the same MTS method with F,,_,, " set equal to

molly
zero. Finally, let Hy [9°77* denote the q th order shadow
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Hamiltonian for the Stormer-Verlet method applied to the fast
system with step-size dt. Then we propose the following
shadow Hamiltonian for use in the newly proposed MTS-
GSHMC method:

HAt[q] = HAt[q] LMTS_ HAt[q] LMIS fast Haz[q] LSV fast, (3 5)

Multiple-Time-Stepping Generalized Shadow
Hybrid Monte Carlo (MTS-GSHMC) Method

[0095] Embodiments of the simulation method take the
hybrid Monte Carlo (GHMC) method (Kennedy and Pendle-
ton, 2001; Horowitz, 1991) and its extension to shadow
Hamiltonians by Akhmatskaya and Reich, 2008 as a starting
point. It has furthermore been demonstrated (Akhmatskaya et
al., 2009) that the generalized shadow hybrid Monte Carlo
(GSHMC) method can be implemented without a momentum
flip upon rejection of the molecular dynamics proposal step.
[0096] We now demonstrate how to combine GSHMC with
amollified MTS method. To do so, we assume that a splitting
of the potential energy function U into a fast contribution U/
and a slow contribution U*** is given. We also assume that an
averaging operator (16) has been defined, which implies a
mollified slow potential (17). We also assume that an
extended mollified MTS method (22) as well as a shadow
Hamiltonian (35) of order q=4 has been implemented. For
simplicity of notation, we denote this shadow Hamiltonian by
Ha,

MTS-GSHMC: Algorithmic Summary of One Embodiment

[0097] The generalized shadow hybrid Monte Carlo
(GSHMC) algorithm of Akhmatskaya and Reich, 2008 and
Akhmatskaya et al., 2009 for sampling with respect to the
shadow canonical distribution

Peanon®eXP(=PH,,) (36)

is defined as the concatenation of two MCMC steps: a
molecular dynamics Monte Carlo (MDMC) and a partial
momentum refreshment Monte Carlo (PMMC) step. Two key
novel steps of the proposed MTS-GSHMC method are the
implementation of an extended mollified impulse MTS
method (20)-(21) and importance sampling with respect to a
shadow Hamiltonian H,,. We now summarize the proposed
MTS-GSHMC method.

[0098] The accepted states of the MTS-GSHMC method
are denoted by Q,~(Y,%t)%, i=0, . . . I, where I is a given
integer, Y, =(X,%,1,P,%,b,)%, X, is a collective vector of atomic
positions, P, is a collective vector of atomic momenta, b, is a
scalar, and t, is time. Note that the definition of €2, is different
from the one used for the MTS-GHMC method in the co-
pending application.

Partial Momentum Refreshment Monte Carlo (PMMC)

[0099] The PMMC step of MTS-GSHMC consists of a
proposal step and a Metropolis accept/reject criterion.
[0100] Partial momentum refreshment (PM). Given an
accepted state Q,=(Y,%t,)%, Y= 1,P,5b)7, its col-
lective atomic momentum vector P, is mixed with an
independent and identically distributed normal (Gauss-
ian) noise vector E, of dimension 3N and the partial
momentum refreshment step is given by

P=cos(¢)P+sin(§)E,,

& ~=cos($p)Z;~sin($p)P;, 37
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where 0<¢p=n/2 is a given angle and =,~N[0,M™']. Here
N[0,M™'] denotes the (3N)-dimensional normal distribution
with zero mean and covariance matrix pM ™', M is the diago-
nal mass matrix of the molecular system, f=1/k;T is the
inverse temperature and H,, is the shadow Hamiltonian.
Denote the proposed state vector by &,~C¥,%t)7, ¥~X,%1,
R b7

[0101] Monte Carlo (MC). The accepted state @, is found

through a Metropolis accept/reject criterion:

a - {ﬂ; with probability min(l, exp(—BAHY,) (38)
' Q; otherwise,

with

(39

D —1= 17—! —1=
AHS, = Hy (X, Pr) + 52 MT'E; — Hu(X;, P - EE‘TM 'g;.

Molecular Dynamics Monte Carlo (MDMC)

[0102]

[0103] Molecular dynamics (MD). We apply the
extended mollified MTS method (22) to the current state
O =Y, t,)  with Y,~X,1,P,%,b,)”. The proposal state
is defined by

This step consists of the following two sub-steps.

QAP rLAN", with T20(F) (40)

for T‘FAtL and given integer L=1. Let us also introduce Q,™=(
Y 0L Y X L-Pb)h
[0104] Monte Carlo (MC): The next accepted state Q,, |
is found through a Metropolis accept/reject criterion

ot

€ with probability min(1, exp(— BAH,,) @n
Qi =
O-; otherwise,

with

AHy, = Hy(X;, P) - Hp(X:, P). “2)

[0105] Depending on the implementation—either without
flip or with flip—Q,* or Q;~ are used in (41) respectively.

Remarks

[0106] We wish to point out that the collective vector of
atomic positions X, as well as time t, remain unchanged from
Q, to Q,,,, in case of rejection of the MDMC proposal step.
[0107] The free parameters of the MTS-GSHMC scheme
include the angle ¢ in (37), the inner and outer step-sizes St
and At, respectively, as well as the number of outer time-steps
L and the order of the shadow Hamiltonian. We will always
assume that

o=V 2ye<<L. (43)
[0108] Here y>0 is the collision frequency of an underlying

Langevin model (Akhmatskaya et al., 2009; and see co-pend-
ing application) and T=AtL. Throughout, we will use IL=1.

[0109] Note that the variable b is only required for comput-
ing shadow Hamiltonians. Furthermore, only differences inb
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appear in the formulas for shadow Hamiltonians and, hence,
one can set b=0 at the beginning of each MDMC and PMMC
step.

Data Analysis

[0110] Let {Q,},_,' denote a sequence of accepted states
from a MTS-GSHMC simulation with Q~(Y,%t)” and Y,=
(X5 1,P,5b,)". Expectation values of a function f{T), T=(X7,

PT)?, with respect to the canonical density
Peanon™exp(-BH) “4)

are computed according to the formula

/ 45)
Z wif([)
(="
2w
i=1
with weight factors
w=exp(=P(HX; P)~H (X, P) (46)

and state variables I' =X, ,P,)*. Provided the MTS-
GSHMC method generates an ergodic Markov chain for the
given molecular system, we have

lim (f) = E[f] @7

independent of the specific parameter values of the imple-
mented MTS-GSHMC method (Liu, 2001).

[0111] In our numerical experiments we will compute
expectation values for kinetic and total energy as well as
velocity autocorrelation functions (ACF). See Reich and
Akhmatskaya, 2009 for details on the evaluation of ACFs.
[0112] In the co-pending application, we introduce the
effective outer-step size

At g=Arx(acceptance rate(4R) of MDMC/100), (48)

of a MTS-GHMC method as a measure for efficiency. The
efficiency gain is then defined as the ratio of At to the largest
achievable outer-step size for MTS-LD. Using this measure,
it was found (for the co-pending application) that the effi-
ciency gain of MTS-GHMC over MTS-LD is about 1.4. In
this report, we use effective outer time-steps to compare the
newly proposed MTS-GSHMC to the MTS-GHMC method
of the related art co-pending application.

Model System and Numerical Results

Description of Model System

[0113] We consider a one-dimensional chain of diatomic
molecules interacting through Lennard-Jones potentials. The
details of the model and the simulation parameters are iden-
tical to those of the co-pending application.

[0114] We now describe the model system in more detail.
All quantities are treated as dimensionless. Each particle/
atom has mass m=0.5, position x,[0,1] and velocity v,ER.
We assume periodic boundary conditions over a domain of
length 1=20 and set the number of particles to N=20 (i.e., we
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consider 10 diatomic molecules). The potential energy of the
system is given by

P (48A)
UX) = 5 (b =il =17 +
i=1

SIp)) (e (e

=1 jen(i)

where n(i) contains the indices of the (N-3) nearest non-
bonded neighbors of particle i, 0°=Y5, and K=1.5421e+05.

[0115] Note that the frequency of the fast diatomic bond
vibrations is given by

0=V 2K/m~785.3982. (48B)

[0116] This frequency has been chosen such that the linear
stability limit of the standard Stormer-Verlet method is At=2/
w=0.0025 and the first numerical resonance of the standard
MTS method occurs at At=rt/w=0.004 (Izaguirre et al., 1999).
Hence our model system qualitatively mimics the stability
limits found for MTS methods applied to solvated biomo-
lecular systems (Izaguirre et al., 1999) with one dimension-
less time unit corresponding to one picosecond. We will use
this (formal) association of dimensionless “model” time with
“real” time throughout this section.

[0117] Furthermore, the stability limit of the Stormer-Ver-
let method applied to the Lennard-Jones interactions alone
was found numerically to be around At=0.015 ps. We note that
this stability limit is of the same order of magnitude as the
achievable outer step-sizes reported by Izaguirre et al., 2001
for Langevin stabilized and mollified MTS methods. It
should, however, be kept in mind that the large time-step
behavior of biomolecular simulations is much more complex
than what our model system can represent.

[0118] We perform constant NVT simulations at p=1/
kzT=1 using the proposed embodiment of the MTS-GHMC
or MTS-GSHMC method implemented without momentum
flip and compare the results to Langevin stabilized MTS
simulations (MTS-LD). Following Izaguirre et al., 2001, the
collision frequency is y=0.2 ps~" in all cases. The slow and
fast potential energy contributions are defined by the stiff
bonded interactions and the Lennard-Jones interactions,
respectively. We monitor the mean kinetic and total energies
as well as the velocity ACF for the center of mass motion of
the diatomic molecules. In case of MTS-GHMC or MTS-
GHSMC we also collect the acceptance rates (AR) in the
Metropolis accept/reject criterion.

Numerical Results

[0119] We first tested the MTS-GHMC method of the co-
pending application for inner step-sizes larger than those
reported in that application and found that 8t can be increased
to 0t=0.5 fs (as opposed to 8t=0.25 fs used in Reich and
Akhmatskaya, 2009). A further increase resulted in the inner
step-size led to dramatically reduced acceptance rates in the
MDMC part of MTS-GHMC. However, the MTS-LD imple-
mentation of [zaguirre et al., 2001 gave satisfactory results for
dt=1 fs (but not for 8t=2 fs) and we conclude that the MTS-
GSHMC method should be able to use dt=1 fs as the inner
step-size. The specific results can be found in Table 1.
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TABLE 1
numerical  numerical
Method ot At <H> temperature AR MDMC
MTS-GHMC 0.25fs 10 fs 29.1690 1.0045 96%
MTS-GHMC 0.25fs 16 fs 29.6510 1.0097 85%
MTS-LD 0.25fs 10 fs 29.3044 1.0041 NA
MTS-GHMC 0.5 fs 10 fs 28.8384 1.0058 89%
MTS-GHMC 0.5 fs 16 fs 30.1134 1.0133 85%
MTS-LD 0.5 fs 10 fs 29.0486 0.9886 NA
MTS-GHMC 11fs 10 fs 27.5779 1.0043 60%
MTS-GHMC 11fs 16 fs 30.5763 1.0016 76%
MTS-LD 11fs 10 fs 30.7494 0.9957 NA

[0120] In Table 1 we state averages of total energy, com-
puted temperatures (from the mean kinetic energy) and
Metropolis acceptance rates (AR) for the MTS-GHMC
method as a function of the inner and outer time-steps. The
target temperature is T=1 and a reference simulation gave an
averaged total energy of <H>=29.4121 (Reich and Akh-
matskaya, 2009). We conclude that an inner time-step of dt=1

fs leads to a much reduced acceptance rate, while the results
for 8t=0.5 fs are acceptable. We also note that the errors in the
computed values for <H> are above the 5% threshold for the
MTS-GHMC simulation with 8t=1 fs and At=10 fs (printed in
bold). For comparison, we also present results from Langevin
stabilized and mollified MTS simulations (MTS-LD) and find
that all reported outer and inner step-sizes lead to an accept-
able accuracy. We also conducted simulations with an inner
step-size of dt=2 fs, which led to large errors (i.e., signifi-
cantly above the 5% threshold) in the computed temperature
as well as total energy for both MTS-GHMC and MTS-LD.

[0121] We implemented the newly proposed MTS-
GSHMC method without momentum flip with shadow
Hamiltonian (34), 8t=1 fs, L=1, ¢=V 2yAt, yv=0.2 ps~*, and
outer step-sizes ranging from At=10 fs to At=22 fs. The num-
ber of Monte Carlo samples [ is given by the closest integer to
10000/At so that each simulation covers approximately the
same “MD time-span” of 10 microseconds.

[0122] The simulation results can be found in Table 2. In
Table 2 we provide averages of total energy and computed
temperatures (from the mean kinetic energy) for MTS-
GSHMC with fourth-order modified energy (34) as a function
of'the outer time-step At. The inner time-step is 6t=1 fs for all
simulations. We also report Metropolis acceptance rates (AR)
in the PMMC and MDMD parts of MTS-GSHMC. The target
temperature is T=1 and the reference simulation LD gave an
averaged total energy of <H>=29.4121. Simulations with an
outer step-size larger than 20 fs lead to numerical instabilities.
[0123] Simulations with an outer time-step of At=22 {s are
not reported as they led to extremely long sequences of
rejected steps, i.e., the acceptance rate in the MDMC part of
MTS-GSHMC became very small (below 50%). An assess-
ment of the dynamic properties of the results can be made
from FIG. 4. We note that the ACFs of the diatomic center of
mass velocities are very similar to those reported in Reich and
Akhmatskaya, 2009 for the same simulation settings.

[0124] We find that MTS-GSHMC allows for the same
outer step-sizes as MTS-GHMC while at the same time sig-
nificantly increasing the acceptance rates in the MDMC part.
Based on effective outer step-sizes (48), this implies an effec-
tive efficiency gain which we record in Table 3. Our results
suggest that MTS-GSHMC is about 1.4 times more effective
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than MTS-GHMC and about 1.9 times more effective than the
MTS-LD method of Izaguirre et al., 2001.

TABLE 2

numerical — numerical
Method At <H> temperature ARPMMC AR MDMC
MTS- 10fs  28.0218 0.9948 98.5% 99.9%
GSHMC
MTS- 12f  28.5266 1.0086 98.4% 99.7%
GSHMC
MTS- 14fs  29.2522 1.0259 98.2% 99.1%
GSHMC
MTS- 16fs  28.0826 0.9974 98.0% 98.3%
GSHMC
MTS- 18fs  28.2329 0.9965 97.8% 97.3%
GSHMC
MTS- 20fs  28.5648 1.0178 97.6% 96.0%
GSHMC
[0125] FIG. 4 shows the largest achievable outer step size in

graphical form. The largest achievable outer step-size for
MTS-GSHMC is 20 fs (against 10 fs for MTS-LD) which
corresponds to effective step-size of 19.2 fs. Both MTS-LD
and MTS-GSHMC allow for inner step-size 6t of up to 1 fs.
MTS-GHMC reproduces the mean energy and temperatures
within 5% of the reference values for outer step-sizes of up to
20 fs.

[0126] InTable 3, we indicate effective outer step-sizes for
MTS-GSHMC and MTS-GHMC. We find that MTS-
GSHMC increases the effective outer-step sizes of MTS-
GHMC by a factor of about 1.4. The increase compared to
MTS-LD is about 1.9.

TABLE 3

At Method Aty Method Atog

1066  MTS- 10.0fs MTS-GHMC 9.6 fs
GSHMC

12f6  MTS- 12.0fs MTS-GHMC 11.4fs
GSHMC

14fs  MTS- 13.9fs MTS-GHMC 12.6 fs
GSHMC

1666 MTS- 153 fs MTS-GHMC 13.6 s
GSHMC

18fs  MTS- 17.5fs MTS-GHMC 13.7 fs
GSHMC

20fs  MTS- 19.2fs MTS-GHMC 13.2fs
GSHMC

[0127] FIG. 5 shows the autocorrelation functions (ACFs)

of diatomic center of mass velocities for MTS-GSHMC as a
function of the outer time-step At. Given the fact that we cover
arelatively large range of time-steps beyond the stability limit
of MTS-LD, the computed ACFs agree remarkably well. The
corresponding ACF from the small time-step reference simu-
lation LD are also provided for comparison.
[0128] Here we summarize the main findings from our
numerical experiments relating to specific embodiments.
[0129] Shadow Hamiltonians: We found that a straight-
forward application of the shadow Hamiltonian formu-
lations of Skeel and Hardy, 2001 to MTS methods leads
to a large drift in energy values along MC samples. An
improved formulation (34) was developed and success-
fully implemented for the test system of the co-pending
application, MTS-GHMC.
[0130] Efficiency gains: Compared to MTS-GHMC, the
novel MTS-GSHMC method allows an increase in the
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inner time-step Ot by a factor of 2 and the effective
outer-step (48) could be increased by a factor of 1.4
while not reducing the accuracy of the simulation
results. Compared to MTS-LD (Izaguirre et al., 2001),
the effective outer time-step could be increased by a
factor of nearly 2.

[0131] Accuracy and Stability: Both MTS-GHMC and
MTS-GSHMC run at comparable accuracy. It appears
that MTS-GSHMC becomes more vulnerable to long
sequences of rejections as At increases beyond 20 fs.
However, it is also observed that both MTS-GHMC and
MTS-GSHMC require outer step-sizes of At=20 fs to
accurately reproduce velocity ACFs. Hence, outer step-
sizes larger than 20 fs are only of interest in the context
of pure sampling (which is not considered in this report
and for which alternative methods are available such as
MTS-GSHMC with momentum flips (Akhmatskaya et
al., 2009; and see co-pending application).

[0132] There are some limitations of our model system
compared to biomolecular simulations that need be pointed
outclearly. In particular, numerical evidence suggests that the
achievable outer step size of mollified MTS methods is lim-
ited by resonance instabilities at about 8 fs for explicit water
simulations (Izaguirre et al., 1999). Additional resonance
instabilities are found for even larger outer step-sizes (Izagu-
irre et al., 2001). These instabilities can be masked by using
Langevin dynamics with increasingly large values of the col-
lision frequencies y (Izaguirre et al., 2001). On the other hand,
the achievable outer step-size for our model system is limited
by the stability of Stérmer-Verlet with respect to Lennard-
Jones interactions. This instability cannot be overcome by
Langevin dynamics even with increasingly large values of vy.
This (non-resonance) stability barrier also limits the possible
efficiency gains for MTS-GSHMC and we expect larger pos-
sible increases of outer-step sizes for simulations of biomo-
lecular systems. Finally, note that short range contributions of
the Lennard-Jones interactions have been treated as part of
the fast forces in Izaguirre et al. (1999, 2001) which again
points towards larger achievable outer time-steps for MTS-
GSHMC in biomolecular applications.

Appendix A. Impulse Time-Stepping Methods

[0133] Inthis appendix, we outline how (18) can be solved
exactly to give rise to a numerical approximation for the
differential equation

49

slow
= VUi

=_V Ja:
M X U st X X).
) (X) (X)

[0134] We note that equation (49) is conservative with
energy (19B)

[0135] We recall that the ratio between the inner time-step
Stand the outer time-step Atis denoted by p=At/dt and L is the
number of outer time-steps. We introduce the notation P(t'+e€)
and P(t'-€) to denote the left and right hand side, respectively,
limits of a time-dependent collective atomic momentum vec-
tor P(t) with a discontinuity at t=t'. We also introduce t,=ndt,
n=0, ...,pL.

[0136] Integration of (20) once with respect to time reveals
that P(t)=const. whenever t=t,, which implies

X(t,, =Xt )+OtMP(t +€), P(t,,, ,—€)=P(t +€). (50)
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[0137] For all t=t,, n=0, . . . ,pL, an “impulse/kick” is

applied to the velocities while the positions remain constant,

ie., X(t,+€)=X(t,-€)=X(t,) since X(t) is continuous. The

magnitude of the impulse/kick depends on whether there is an

integer m, m=0, ...,L, such that n=mp (outer time-step) or not

(inner time-step). In case of an outer time-step we have
P(t,+€)=P(t,—€)+c,,AtF,,
(#,)), (n=pm)

while an inner time-step leads to

S (X (5, e, DX

olly

G

P(t +€)=P(t,~€)+d, etF™*(X(z ). (52)

[0138] The constant coefficients ¢, and d,, take values as
defined for (18). Given an initial molecular state I'(0), we
formally set P(—e)=P(0) to initiate the algorithm. Similarly, at
final time T=AtL, we formally set P(t)=P(t+€) to define the
molecular state vector I'(r) at t=T. Hence we have constructed
a mapping W_: I'(0)—TI'(t) which maps an initial molecular
state I'(0) into the desired numerical approximation I'(t) at
time T=LAt=pL.0t. The mapping W, is time-reversible, sym-
plectic and volume conserving (Izaguirre et al., 1999)

Appendix B

[0139] The fourth-order shadow Hamiltonian of Skeel and
Hardy, 2001 for the Stormer-Verlet method applied to a sys-
tem with Hamiltonian

HX,P) = %PTM’1P+ Ux) G

and step-size h is given by

HYY (xi, Py = HX:, P+ %[U(Xm —2U(X) + UXi-)T + 69

L sh* T -1
kM [F(X;+1)—F(X;71)]+§F(X;)M F(X) +

127

2
%F(X;)TM’1 [F(Xi1) — 2F(X) + F(Xi ],

with F=—VU. We obtain H """/ by setting h=8t, U=UF/**
and F=F*" and H, """ by setting h=At, U=U,,_,. "
and F:FmoZZySZOW, respectively. Alternatively, one could use
the fourth-order shadow Hamiltonian proposed in Akh-

matskaya and Reich, 2008 for the Stérmer-Verlet method.

1. A computer-implemented method of simulating behav-
iour of a thermodynamic system over time, the thermody-
namic system having potential energy that can be split into
more quickly varying parts and more slowly varying parts and
having a state described by collective vectors of position and
momentum at any given time, the method comprising a
momentum refreshment process and a conservative dynamics
process, wherein

the momentum refreshment process comprises carrying

out an operation of mixing the collective momentum
vector with a noise vector and carrying out an accep-
tance/rejection operation;

the conservative dynamics process comprises applying a

multiple time stepping conservative dynamics operation
to a current state, in which operation calculations for
forces corresponding to more slowly varying energy
parts in the thermodynamic system undergo an averag-



US 2011/0010147 A1

ing procedure and are carried out at a larger time step
than calculations for forces corresponding to more
quickly varying energy parts; and

carrying out an acceptance/rejection operation; wherein

the acceptance/rejection operations are based on an
approximation of the system energy expressed using
shadow Hamiltonians and comprise accepting a current
state or returning a replacement state.

2. A method according to claim 1, wherein the conservative
dynamics process uses a mollified impulse method, in which
an averaging operator A is applied to a collective position
vector X and derives mollified more slowly varying potential
energy UmoHySZOW related to more slowly varying potential
energy, yielding mollified forces FmoHySZOW, and preferably
wherein calculated properties are re-weighted at the end of
the entire method, to allow for the use of mollified terms and
shadow Hamiltonians.

3. A method according to claim 2, wherein the mollified
multiple time stepping method applies the operator A to the
collective position vector X and derives the mollified poten-
tial energy U, _,, > related to more slowly varying potential

molly
energy, yielding mollified more slowly varying forces F

slow

577" wherein:

mol”

dZ
M X ()=
L pL
Z IS (1~ mADFSY (X (1) + Z 016, (t — nSOFF (X (1)),
m=0 n=0

for t€]0,'=LAt] with the slow forces defined by

Frpoty™ T Q==Y Uy 11,7 (0= (D) TP (4(X)),

where M is a diagonal mass matrix of atomic masses, A (X)
denotes the Jacobian matrix of partial derivatives, the larger
time-step for more slowly varying forces F’** is At, the
smaller time-step for more quickly varying forces /% is t,
3, 1s the Dirac delta function, ¢,,=d,,=1 except when m=n=0or
m=L, n=pL, respectively, in which case c,=d, =5, integer
p>1, and L>0 is a given integer.

4. A method according to claim 1, wherein either the
momentum refreshment or the conservative dynamics pro-
cess is the first process of the method, and the resulting state
of'any process in the method provides the current state for the
next process in the method.

5. A method according to claim 1, wherein the acceptance/
rejection operation following the mixing operation returns
the resulting state of the mixing operation in the case of
acceptance and the state before the mixing operation as the
replacement state in the case of rejection; and wherein

the acceptance/rejection operation following the conserva-

tive dynamics operation returns the resulting state of the
conservative dynamics operation in the case of accep-
tance; and, in the case of rejection, the state before the
conservative dynamics operation is either returned as the
replacement state or undergoes a momentum flip to pro-
vide the replacement state.

6. A method according to claim 1, wherein the momentum
refreshment process and/or the conservative dynamics pro-
cess constitutes a multiple iteration process, in which the
entire process is repeated a selected number of times consecu-
tively, to provide a final resulting state, which may be used as
a current state for the next process.
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7. A method according to claim 1, wherein the states in the
method are denoted by Q,=(Y,” ,t,)%,i=0, ..., 1, where I is a
given integer, Y,=(X,%,1,P,",b,)%, X, is a collective vector of
atomic positions, P, is a collective vector of atomic momenta,
b, is a scalar, and t, is time and wherein the mixing operation
comprises: given a current state, mixing its collective atomic
momentum vector P, with an independent and identically
distributed normal noise vector =, of dimension 3N, so that

Pcos(@)P+sin(@)Z,,
&=cos(¢)Z~sin(§)P;,

where 1 is a given integer, N is the number of particles in the
system, 0<¢=rm/2 is a given angle, E,~N[0,fM "], N[0,fM™]
denotes the (3N)-dimensional normal distribution with zero
mean and covariance matrix M, M is the diagonal mass
matrix of the molecular system, and =1/kzT is the inverse
temperature, proposed vector being denoted by &,~(¥,%,t,)%,
¥ ~(X,51,R,b)%; and preferably wherein the subsequent
acceptance/rejection operation comprises obtaining the
resulting state Q,; through a Metropolis accept/reject crite-
rion:

Q; with probability min(1, exp(— BAH,)
Q;

o

with

otherwise,

AHE. = Hr (X, P M2 _H. (X, P _l':‘TM*l’:‘-
At T Ar( is 1)+ =i Ar( is 1) ZH‘ =is

in which H,, is the shadow Hamiltonian and AH,° is the
change in shadow Hamiltonian due to the mixing operation.

8. A method according to claim 1, wherein the states in the
method are denoted by Q,=(Y,%t)7,i=0, . .. I, where T is a
given integer, Y,=(X,%,1,P,%,b,)%, X, is a collective vector of
atomic positions, P, is a collective vector of atomic momenta,
b, is a scalar, and t, is time and wherein the conservative
dynamics operation comprises applying the multiple time
stepping method to the current state Q*=(Y,%t)" with
Y~X51,P5b,)" using a time-reversible and volume con-

serving mapping W_, with the proposed state being defined
by:

Q (I LAY, with $79(Y)

with T=AtL and given integer . and preferably wherein the
subsequent acceptance/rejection operation comprises obtain-
ing the resulting state Q,_; through a Metropolis accept/reject
criterion:

¢
Qyy = o,

with

with probability min(1, exp(— SAHA;))

otherwise,

AHy, = Hy(X;, P) - Hy(XiPy),

in which H,, is the shadow Hamiltonian and AH,, is the
change in shadow Hamiltonian due to the conservative
dynamics operation; and in which Q=Y )%
Y- ~X,%1,-P,7b,)" wherein Q,*- denotes either Q,* or 3,

i
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in which Q,” indicates applying a momentum flip to the state
Q, and Q,*=0, and indicates that no momentum flip has been
applied.

9. A method according to claim 1, wherein the shadow
Hamiltonian used can be expressed as:

H =, JaMIS_fp [aMISfasty . 1al.SVifast,

in which H, 1"*** denotes the q th order shadow Hamilto-
nian for an MTS method, H, [7-75/2 denotes the q th order
shadow Hamiltonian for the same M TS method with the more
slowly varying forces F*** set equal to zero and Hy 14377/
denotes the q th order shadow Hamiltonian for a Stormer-
Verlet method applied to the more quickly varying forces in
the system, with step-size dt.

10. A method according to claim 1, further comprising a
step of initially accepting input of simulation conditions,
wherein the simulation conditions include at least one of
volume, mass, temperature, pressure, number of particles,
and total energy; and/or further comprising a step of initially
accepting input of simulation parameters, wherein the simu-
lation parameters include at least one of a number of repeti-
tions of the momentum refreshment process and a number of
repetitions of the conservative dynamics process, the larger
and smaller time step in conservative dynamics, the number
of iterations of the entire method, the current state for the first
step in the method, the force field parameters, a time-revers-
ible and volume conserving mapping ¥_, and a constant angle
¢, where 0<¢p=mn/2.

11. A method according to claim 1, including the step of
displaying the results on a screen or printout.

12. A method of molecular simulation of a system over
time comprising:

modelling the system using an atomistic model;

carrying out the method of simulating behaviour of a ther-

modynamic system according to any of the preceding
claims; and

analysing the results obtained from the simulation and

relating them to macroscopic level properties.

13. A method according to claim 12, further comprising
using the relationship of the results to the macroscopic prop-
erties to assess and optionally modify the system at the mac-
roscopic level, before repeating the method on the modified
system.

14. An apparatus which simulates behaviour of a thermo-
dynamic system over time, the thermodynamic system hav-
ing potential energy that can be split into more quickly vary-
ing parts and more slowly varying parts and having a state
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described by collective vectors of position and momentum at
any given time; the apparatus comprising:

a momentum refreshment part operable to carry out an
operation of mixing the collective momentum vector
with a noise vector and an acceptance/rejection opera-
tion;

a conservative dynamics part operable to apply a multiple
time stepping conservative dynamics operation to a cur-
rent state, in which operation calculations for forces
corresponding to more slowly varying energy parts in
the thermodynamic system undergo an averaging proce-
dure and are carried out at a larger time step than calcu-
lations for forces corresponding to more quickly varying
energy parts; and to carry out an acceptance/rejection
operation; wherein

the acceptance/rejection operations are based on an
approximation of the system energy expressed using
shadow Hamiltonians and comprise accepting a current
state or returning a replacement state

15. A computer-readable medium storing a computer pro-

gram which, when executed on a processor, carries out a
computer-implemented method of simulating behaviour of a
thermodynamic system over time, the thermodynamic system
having potential energy that can be split into more quickly
varying parts and more slowly varying parts and having a
state described by collective vectors of position and momen-
tum at any given time, the method comprising a momentum
refreshment process and a conservative dynamics process,
wherein

the momentum refreshment process comprises carrying
out an operation of mixing the collective momentum
vector with a noise vector and carrying out an accep-
tance/rejection operation;

the conservative dynamics process comprises applying a
multiple time stepping conservative dynamics operation
to a current state, in which operation calculations for
forces corresponding to more slowly varying energy
parts in the thermodynamic system undergo an averag-
ing procedure and are carried out at a larger time step
than calculations for forces corresponding to more
quickly varying energy parts; and carrying out an accep-
tance/rejection operation; wherein

the acceptance/rejection operations are based on an
approximation of the system energy expressed using
shadow Hamiltonians and comprise accepting a current
state or returning a replacement state.
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