Simulation of Short and Normal Logging Measurements in the Presence of Tool Eccentricity Using Fourier Series Expansion in a New System of Coordinates and a Self-Adaptive hp-Finite Element Method

Myung Jin Nam¹,*, Seho Hwang¹, David Pardo²,*, Kwon Gyu Park¹, Changhyun Lee¹, and Carlos Torres-Verdín³

¹Korea Institute of Geoscience and Mineral Resources (KIGAM), Korea
²Basque Center for Applied Mathematics (BCAM), Spain
³The University of Texas at Austin, USA
*Formerly, at The University of Texas at Austin, USA

Presentation at KSGE, May 6, 2009.
Overview

1. A Fourier Series Expansion in a New System of Coordinates
2. Short and Long Normal Instruments
3. Numerical Results
4. Conclusions
Eccentered Tool

Cartesian system of coordinates: \((x_1, x_2, x_3)\)

New system of coordinates: \((\zeta_1, \zeta_2, \zeta_3)\)

Subdomain I

\[
\begin{align*}
x_1 &= \rho_0 + \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3
\end{align*}
\]

Subdomain II

\[
\begin{align*}
x_1 &= \frac{\zeta_1 - \rho_2}{\rho_1 - \rho_2} \rho_0 + \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3
\end{align*}
\]

Subdomain III

\[
\begin{align*}
x_1 &= \zeta_1 \cos \zeta_2 \\
x_2 &= \zeta_1 \sin \zeta_2 \\
x_3 &= \zeta_3
\end{align*}
\]
Eccentered Tool

Cartesian system of coordinates: \((x_1, x_2, x_3)\)

New system of coordinates: \((\zeta_1, \zeta_2, \zeta_3)\)

Constant material coefficients in the quasi-azimuthal direction \(\zeta_2\)
in the new non-orthogonal system of coordinates!!!
Modeled Tool (that KIGAM has been using)

The vertical dimensions and locations of each electrode:
We followed the vertical tool configuration of a commercial tool

- **M (Long Normal)**
 - Vertical location: 64 Inch (1.6254 m)
 - Ohm-m: 10^6

- **M (Short Normal)**
 - Vertical location: 16 Inch (0.4064 m)
 - Ohm-m: 10^6

Radial length of electrodes: 1 cm
Short normal

BH Radius: 0.2 m
BH Resistivity: 10 ohm-m

Largest eccentricity effects on the most conductive layers
Short normal

BH Radius: 0.2 m
BH Resistivity: 1 ohm-m

Smaller eccentricity effects with decreasing BH resistivity
Short normal

BH Radius: 0.2 m
BH Resistivity: 10 ohm-m

Largest eccentricity effects on the most conductive layers
Short normal

BH Radius: 0.1 m
BH Resistivity: 10 ohm-m

Smaller eccentricity effects with decreasing BH radius
Short normal

BH Radius: 0.2 m
BH Resistivity: 10 ohm-m

Largest eccentricity effects on the most conductive layers
Long normal

BH Radius: 0.2 m

BH Resistivity: 10 ohm-m

Smaller eccentricity effects on long normal logging measurements
Eccentered Tool Effects (DC DLL)

Eccentered-tool effects are larger around layer boundaries in resistive layers.

Presentation at KSGE May 06 2009
Conclusions

- We have successfully simulated 3D short and long normal logging measurements by combining the use of a Fourier series expansion in a new system of coordinates with a 2D higher-order self-adaptive hp finite element method.

- Larger eccentricity effects at a more resistive borehole with a larger radius

- Larger eccentricity effects on short normal logging measurements than those on long normal logging measurements
Acknowledgements

The work reported in this paper was funded by the Ministry of Land, Transport and Maritime Affairs of Korea.

The work of the third author was partially funded by the Spanish Ministry of Science and Innovation under the projects MTM2008-03541 and TEC2007-65214.
Acknowledgements

The work reported in this paper was also funded by UT Austin’s consortium on Formation Evaluation sponsored by:

[Logos of various oil and gas companies]