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Self-Adaptive Goal-Oriented hp-FEM

We vary locally the element size
/7 and the polynomial order of
approximation p throughout
the grid.

Optimal grids are automatically
generated by the /palgorithm.

The self-adaptive goal-oriented
/10-FEM provides exponential
—=———— convergence rates in terms of

|

b ﬁﬁ‘a-ﬁasﬂdﬁéﬁﬁ’; the CPU time vs. the error in
e a user prescribed quantity of
Interest.
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DISCRETIZATION

The h-Finite Element Method

1. Convergence limited by the polynomial degree, and large material
contrasts.

2. Optimal h-grids do NOT converge exponentially in real applications.

3. They may “lock” (100% error).

The p-Finite Element Method

1. Exponential convergence feasible for analytical (“nice”) solutions.

2. Optimal p-grids do NOT converge exponentially in real applications.

3. If initial h-grid is not adequate, the p-method will fail miserably.

The hp-Finite Element Method

1. Exponential convergence feasible for ALL solutions.

2. Optimal hp-grids DO converge exponentially in real applications.

3. If initial hp-grid is not adequate, results will still be great.
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DISCRETIZATION I

Energy norm based fully automatic hp-adaptive strategy

: o

Coarse grids Fine grids
(h, p) (h/2, p+1)

Global hp-refinement

Global hp-refinement

| v
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DISCRETIZATION 11

Goal-Oriented Adaptivity

Coarse grids Fine grids
(h, p) (h/2, p+1)

Solve DIRECT (¥) and DUAL (G) problems
on both grids (h, p) and (h/2, p+1)

Solve DIRECT (¥) and DUAL (G) problems
on both grids (h, p) and (h/2, p+1)
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DISCRETIZATION 11

Motivation (Goal-Oriented Adaptivity)

Solution decays exponentially.
I[ECT)I/IE(R)| = 10°°

Infinite Domain
Resistivity = 1 Ohm m

Frequency = 2 Mhz

Results using energy-norm adaptivity:

- Energy-norm error: 0.001%

50 meters
® = = ¥
Transmutter (T) Receiver (R)

— Relative error in the quantity of

! interest > 103004,

TEXAS o
: Presentation at KSGE May 06 2009



DISCRETIZATION 11

Motivation (Goal-Oriented Adaptivity)

® =

Infinite Domain
Resistivity = 1 Ohm m

Frequency = 2 Mhz

Solution decays exponentially.
I[ECT)I/IE(R)| = 10°°

Results using energy-norm adaptivity:

- Energy-norm error: 0.001%

50 meters

Transmutter (T)

=X

Receiver (R) - Relative error in the quantity of

! interest > 103004,

Goal-oriented adaptivity is needed!!!
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DISCRETIZATION

Motivation (Goal-Oriented Adaptivity)

Infinite Domain

Resistivity = 1 Ohm m

Frequency = 2 Mhz

50 meters
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3D Deviated Well

Cartesian system of coordinates: (x, x,, x;)
New non-orthogonal system of coordinates: (¢, &, &)

Subdomain 3 X
%I—>x1
X3
9 0
a ey,
! \‘\afi?n
G 1
Subdomain 1 Subdomain 2 Subdomain 3

X, =, €08 ¢, X, =§;€08¢, X, =§;€08C,
X, =¢,sing, X, =¢;sing, X, =¢;sing,

X, =G, X; =g;+¢ tanfcos g,

X, =G, +tan6’ﬂ,o2 cos¢é,

= > ~ P
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3D Deviated Well

Cartesian system of coordinates: (x, x,, x;)
New non-orthogonal system of coordinates: (¢, &, &)

Subdomain 3

Constant material coefficients in the quasi-azimuthal direction ¢,
in the new non-orthogonal system of coordinates!!!!
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3D Deviated Well

For each Fourier mode, we obtain a 2D problem.
Each 2D problem couples with up to five different 2D
problems corresponding to different Fourier modes,
therefore, constituting the resulting 3D problem.

Ay Az A5 0 0 0o 0o 0o o0 |[x] [b]
Ay A, Ay A4, g 0 0 0 0 X, b,
Ay A, A, A, Al 0 0 0 X3 b,
0 A, A Ay As A o 0 0 X4 b,
When we use 9 Fourier 0 0 Ay A, A Ay A, 0 x5 | =1 bs
modes for the Solution: 0 0 0 A As A A Ay oo || X | | b
0 0 0 0 A5 A A, Ay A || x, b,
0 0 0 0 0 Ao A, Ay A || X by
0 0 0 0 0 0 Ay, Ayg A9,9_ Xy | b ]

A;; : represents a full 2D problem for each Fourier basis function
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Parallelization Implementation

Distributed Domain _ .
Decomposition Shared Domain Decomposition!!

Processor Processor Processor Processoln

Processor Processor Processor |Processol
5 6 8
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Dual Laterolog (DLL)

A,
‘ ________
/
«—— _ _ _ -
<« — — — ——~
N
A,
o — e — i —— ——
/
€« — — — — — M,
«—— — — — — Y
Current flow
e i = — — — — — 1)
— M,
= i M,
&
T A;
/
«——— _ _ -
1——'—"_',-"---\
N
T A;

Deep-sensing mode

[ M \ |

. Q termination of Intensities ( /%)
S :
-.._ of Bucking Currents

Focusing Conditions

2Curlr_e_ntq‘ro’\ﬂ/(Ml):V(Mz)
T ~. V(M,)=V(M,)

Shallow-sensing mode
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Post-Processing Method

Synthetic Focusing (Cozzolino et al, 2007)

.f\,';'ug
(1) Focusing conditions Total potential on 47,
| =1 H H ” ” V(M) =V(M,) —> Superposition principle
V(Ml,) = V(Mz,) V(Mz) = VVszz +W1V2,1 +V2,0 +W1'V2,1' +VV;'I/2,2'

V(M) =W, + WV, +Vyy + WV, AWV Al
V(M) = WVey + WV, + Vi + Wi Vo AWV,

(2) Relationships between /7
VM, =WV, + WV Vg + WV 4 WV

W,= (W,+c), W, = (W,+c) for LLd
W, =-(W,+c), W, =—(W,+c) for LLs

withc=0.5 DDI:> Agtl

A

1]

'y
———
————
—————

I /] 8 1
LI R s B B |
—

[}
=y
I /] & &1
T =3 & &1

Wwifor LLd: < from (1) and (2) with the LLd relationship of (3) > A =W

A A |] { Vl,z + V1,1 - Vz,z _Vz,l Vl,l' + Vl,z' _Vz,l' - Vz,z' j||:W1 } :|: Vz,o - VI,O +C(V2,2 + Vz,z' - Vl,2 - Vlz) j|
Vz',z + V2',1 - Vl',2 - Vl',l V21 + sz - V11 - VIZ W1 Vl',O - Vz',o +C(V1',2 + V12 - Vz’,z - sz)

Wfor LLs: < from (1) and (2) with the LLs relationship of (3) >
” H H ” |"2'=1 {Vz,ﬁVI,I—Vz,I—VI,z V2,2V+V1,1V—VI,ZV—V2,1.}[WIHVz,o—z,o+c<Vz,2+n,zv—ﬁ,2—ﬁ,2-)}

Vie t Vo =V =V Vgt Vo =V =V I ] [V =V +eWip + Vo = Vo, = 1200)

—| One problem with several RHSs
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Embedded Post-Processing Method (EPPM)

Coarse Grid

%
g

Solution
Post-Processing Method ik
LT Al
[ ——
L1111
i

Solving one problem with several RHSs

N

/1p-Refined Grid

. Solution

A
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=

=

No@

Optimal
Refinements

Error Smaller J
0
I

Yes

Optimal Grid,
Optimal Intensities
& Solution
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Modeled DLL tool

10" ohm-m The resistivities and radial lengths

/ / of electrode and mandrel.
10|ohm-m

< The vertical dimensions and locations of each electrode:
4 We followed the vertical tool configuration of a commercial tool
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Invaded Formation

Invaded Formation

===LLd: R= Om
+ LLd: R=0.1m

---LLs: R= Om PR

-21 ¢ LLs: R=0.1m
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Effects of Invasion: LLs 1

Borehole

—— S— T — —

0.1 ohm-m

—
=

Borehole: 0.1 m in radius

0.1 ohm-m in resistivity
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Anisotropic Formation

Vertical Well with Anisotropy

-=-LLd: Iso

-6« LLd: Ani 1
---LLs: Iso
* LLs: Ani {
4 A 1 Effects of anisotropy: LLs 1
% % Resistivity of Formation
= I
Eo 5
< 18
o 13
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a g
go
5 s J LLd: effects of anisotropy are
x :E
2r {2 1 negligible in conductive layer
4 S g |
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Deviated Wells

Relative Depth (m)

0, 10, 45, and 60 degrees

Deviated Wells

e o " ' "' Effects of dip angle:
* LLd: 10° K: Thin layer 1
ol * LLd: 45° |
> LLd: 60°
--=-LLs: 0°
off * LLs:10° |
+ LLs: 45°
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Anisotropic Formation

60- and 0-degree Deviated Wells

Anisotropic Formation (Vertical Well) Anisotropic Formation (60-degree Deviated Well)
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Effects of anisotropy increase with increase of dip angle
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Conclusions

We have successfully simulated 3D dual-laterolog
measurements by combining the use of a Fourier
series expansion Iin a non-orthogonal system of
coordinates with a 2D higher-order self-adaptive hp
finite element method.

We have generated optimal hp finite element grids
and optimal intensities of currents for simulation of
dual-laterolog measurements using an embedded
post-processing technique in the hp finite element
method.

Effects of dip angle are larger in conductive layers
than in resistive layers.

Effects of anisotropy increase as dip angle increases.

-
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