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In this talk I shall present some work done in collaboration 
with C.E. Kenig and G. Ponce on quasi-linear Schrödinger 
equations. Our first work on this topic was published in 1993 
with the title: “Small solutions to non-linear Schrödinger 
equations”. In this paper we solve locally in time the IVP

A fundamental piece of our argument is the inequality 
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The work we have done since then can be summarized as 
follows:

 Remove the smallness conditions (Hayashi-Ozawa, Chiara) 

 Extend the result to general metrics: 

Doi, Craig-Kappeler-Strauss.

In collaboration with C. Rolvung. 

The rest of the talk will be mainly devoted to try to motivate the 
problem and to give a hint of the tools we needed and developed 
in order to solve it. 
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The free Schrödinger equation

I want to introduce it from an elemental geometric point of 
view. Let me recall you a plane curve known as the Euler-
Cornu spiral. This curve is characterized by its curvature k 
which is proportional to arc length:

In Euler’s work this curve describes a coiled spring. Cornu 
uses it to give a geometric explanation of Fresnel diffraction 
(wave phenomena).
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Using complex notation to parametrize the curve

Now recall the 1d free Schrödinger equation 

we obtain for the tangent vector
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We get

The relation between a and c0 is done computing the Fresnel 
integrals

Look for solutions of the type                         (δ is 
homogeneous of degree -1).
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Schrödinger map

A natural extension could be to consider the Euler-Cornu spiral 
in the sphere:

(2)
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We could ask if there is a Schrödinger equation associated to 
(2). The answer is yes and it is given by:

(SM)

This is a non-linear equation that appeared for the first time in 
1906 in the work of Da Rios. He arrives at this model as a 
simplification of the dynamics of a vortex filament. In this 
case

and X solves
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Let us look at (SM), and try to understand it a little bit better by 
computing the stereographic projection of u on the complex plane

This can be done in higher dimensions. The corresponding equation is

(SMz)

As we see this equation is of the type
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The cubic NLS
The difficulty of the previous PDE is that the non-linear term 
involves derivatives. However the equation

is much easier to solve if we don’t care about the regularity of 
u0. This is due to the fundamental and elemental chain of 
identities/inequalities:
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•  If

and               is bounded assuming regularity on u0 and 
repeating the process for         ,         , …

•  If for example                            this method does not work.
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easy

not that easy
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The Schrödinger map is a geometric equation and has plenty 
of structure. The above transformation is better understood in 
geometric terms. Recall that if X is a family of curves which 
solves

then the tangent vector               is a solution of the 
Schrödinger map equation. The above transformation is in 
fact (Hasimoto)

16



As a conclusion the Schrödinger map equation in 1d is solved 
(modulus solving Frenet equations for the curvature and the 
torsion). However the situation in higher dimensions is not 
that nice and in fact the bad “derivatives” can not be 
completely eliminated. This creates a very serious problem 
when, for example, uniqueness is considered, because one has 
to look at the equation satisfied by the difference of two 
solutions.
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Landau-Lifshitz
In 1935 Landau and Lifshitz came out with the following equation

(LL)

We see we have added the extra-term  (u·e3) e3. This corresponds 
to the existence of a privileged direction of magnetization e3=
(0,0,1). This equation can be considered as a fundamental 
equation for ferromagnetism.
This extra term implies the existence of a solution Q such that

which plays the rôle of a switch-off/switch-on mechanism. 
Therefore the stability of this solution is a crucial question and as 
far as I know it is an open problem if no dissipation is added. In 
other words this extra term is by no means harmless.
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Let us compute which is the stereographic projection of 
this equation. It is the following

(LL)

One could think this equation can not be much more 
complicated than the previous one. We have added just a 
0-order term that, we said before, it was harmless. 
However this is not completely true because in this case 
we have non-linear terms involving derivatives. In fact, it 
is not a geometric equation.
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A natural question is:

Is there a generalization of Hasimoto 
transformation so that we are reduced to a 
non linear equation similar to the cubic one?

The answer is NO. 

The answer is YES. 

Is there a generalization of Hasimoto 
transformation so that we are reduced to a 
non linear equation similar to the cubic one 
plus small first order terms?
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Integrating factor
Before going on, let us see that Hasimoto’s transformation 
can be seen as some kind of gauge (integrating factor) which 
cancels the first derivatives:

This turns out to be a fundamental trick and most of our work 
has been to give general conditions which assure the existence in 
higher dimensions of such integrating factor. 
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Positive commutators (Local smoothing)

We have seen that in order to understand the cubic equation and 
more generally equation (1) with                         we just computed

In    order      to     deal     with    more     general     non-linearities
                                        we will rely on the elemental identity:

with u a solution of
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Then if
(#)

and
(##)

we obtain an a priori bound.

For example if K as an operator of multiplication by a 
bounded function. Then (##) will follow from the 
conservation of mass.

More generally we could consider
(*)

but unfortunately the algebra does not work and choices as (*) 
don't give (#). We have to extend the algebra of differential 
operators to the one of pseudo-differential operators.
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For example if

with h the Hilbert transform

then

Notice that

Therefore both conditions (#) and (##) are satisfied.
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Quasi-linear equations. Elliptic case

Consider the model problem

with

We  will solve  it in  two  steps. In order to fix the ideas assume 
that                   are constant. Then let us look at the constant 
coefficient PDE:
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Writing it as a system we get

which can be easily diagonalized because

and then a2 − |b|2>0 is a necessary condition.

This can be easily generalized to the variable coefficent 
situation using classical pseudo-differential equations.
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Hence defining the new unknown

we are reduced to look at the problem

In order to get a positive commutator the         term does not 
have the right simmetry.

Let us consider therefore the simplified problem
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In this case we have to consider the system

and the “eigenvalues” are given by

Hence

which is easily handled as a classical pseudo-differential 
operator.
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As a conclusion the algebra of classical pseudo-differential 
operators allows us after some work to obtain both

•          bound

•  local smoothing estimate (positive commutator)
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Non-elliptic case
It is much more delicate. Assume for simplicity

Then a quite simple algebraic argument implies that the only 
possible second order perturbation in      will be of the same type

With respect to first order perturbations:

(3)

The diagonalization procedure given above does not work because

it is of “order zero” which is not enough.
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Then we have to follow a different approach based on 
building the integrating factor to almost kill the first order 
terms. We define a new unknown

such that if u solves (3) then v solves

In order to find K we need a larger class than the one of 
classical pseudo-differential operators. Then a fundamental 
part of our work is to develop the corresponding calculus. I 
will skip the details. However it is important to say that the 
construction of K heavily relies on the qualitative and 
quantitative properties of the solutions to the bicharacteristic 
equations associated to the hamiltonian.
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The theorem
Given a “good” u0 there exists a time T>0 and a unique solution 
to the IVP

with 

•                                                   ,                           real, symmetric 
and invertible

• The solutions of the hamiltonian flow associated to            are 
non trapping.
• There exists N such that

(NLS)
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Some open problems 

The method I have showed above uses techniques developed in 
Harmonic Analysis. In particular the pseudo-differential calculus 
plays a fundamental role. In this section I would like to mention 
some open problems that have appeared in a natural way in the 
process of solving equation (NLS).

33



The maximal function
In order to be able to use the local smoothing estimate it is 
necessary to understand the following maximal fucntion 
introduced by L. Carleson in the late 70's.

Question 1.- Is the following estimate true?

It could be useful for proving the stability of the Landau-Lifshitz 
solution.
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The symbols
In order to construct the integrating factor the following pseudo-
differential operator appears

with θ a function which is zero in a neighborhood of the origin.

Question 2.- Is a(x,D) bounded in Lp?
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The 1d cubic NLS
Consider the IVP

Question 3.-  Is it locally (globally) well-posed for

•              ?

•              ?

Vargas-Vega, Grünrock, Christ.

Connection with Euler-Cornu spiral.
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