A TWO GRID SOLVER FOR ELECTROSTATICS

Automatic *hp*-adaptivity delivers exponential convergence and enables solution of challenging EM problems

A TWO GRID SOLVER FOR ELECTROSTATICS

We seek x such that Ax = b. Consider the following iterative scheme:

$$egin{aligned} r^{(n+1)} &= [I - lpha^{(n)} AS] r^{(n)} \ x^{(n+1)} &= x^{(n)} + lpha^{(n)} S r^{(n)} \end{aligned}$$

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

$$lpha^{(n)} = rg \| \min \parallel x^{(n+1)} - x \parallel_A = rac{(A^{-1}r^{(n)}, Sr^{(n)})_A}{(Sr^{(n)}, Sr^{(n)})_A}$$

Then, we define our two grid solver as:

1 iteration with $S=S_F=\sum A_i^{-1} \quad + \,$ 1 iteration with $S=S_C=PA_C^{-1}R$

A TWO GRID SOLVER FOR ELECTROSTATICS

Error reduction and stopping criteria

Let $e^{(n)}=x^{(n)}-x$ the error at step n, $\tilde{e}^{(n)}=[I-S_CA]e^{(n)}=[I-P_C]e^{(n)}$. Then:

$$\frac{\parallel e^{(n+1)} \parallel_A^2}{\parallel e^{(n)} \parallel_A^2} = 1 - \frac{\mid (\tilde{e}^{(n)}, S_F A \tilde{e}^{(n)})_A \mid^2}{\parallel \tilde{e}^{(n)} \parallel_A^2 \parallel S_F A \tilde{e}^{(n)} \parallel_A^2} = 1 - \frac{\mid (\tilde{e}^{(n)}, (P_C + S_F A) \tilde{e}^{(n)})_A \mid^2}{\parallel \tilde{e}^{(n)} \parallel_A^2 \parallel S_F A \tilde{e}^{(n)} \parallel_A^2}$$

Then:

$$rac{\parallel e^{(n+1)}\parallel_A^2}{\parallel e^{(n)}\parallel_A^2} \leq \sup_e [1-rac{\mid (e,(P_C+S_FA)e)_A\mid^2}{\parallel e\parallel_A^2\parallel S_FAe\parallel_A^2}] \leq C < 1$$
 (Error Reduction)

For our stopping criteria, we want: Iterative Solver Error \approx Discretization Error. That is:

$$rac{\parallel e^{(n+1)}\parallel_A}{\parallel e^{(0)}\parallel_A} \leq 0{,}01$$
 (Stopping Criteria)

A TWO GRID SOLVER FOR ELECTROSTATICS

Fickera problem

Equation: $-\Delta u=0$ Boundary Conditions: Neumann, Dirichlet

Solution: unknown

Final hp grid

A TWO GRID SOLVER FOR ELECTROSTATICS

Guiding automatic hp-refinements

Fickera problem. Guiding hp-refinements with a partially converged solution.

A TWO GRID SOLVER FOR ELECTRODYNAMICS

We seek x such that Ax = b. Consider the following iterative scheme:

$$egin{aligned} r^{(n+1)} &= [I - lpha^{(n)} AS] r^{(n)} \ x^{(n+1)} &= x^{(n)} + lpha^{(n)} S r^{(n)} \end{aligned}$$

where S is a matrix, and $\alpha^{(n)}$ is a relaxation parameter. $\alpha^{(n)}$ optimal if:

$$lpha^{(n)} = rg \| \min \| \| x^{(n+1)} - x \|_B = rac{(A^{-1}r^{(n)}, Sr^{(n)})_B}{(Sr^{(n)}, Sr^{(n)})_B} ext{ (NOT COMPUTABLE)}$$

Then, we define our two grid solver for Electromagnetics as:

1 iteration with $S = S_F = \sum A_i^{-1} \quad + \quad$

1 iteration with $S = S_{
abla} = \sum G_i^{-1}$ +

1 iteration with $S=S_C=PA_C^{-1}R$

A TWO GRID SOLVER FOR ELECTRODYNAMICS

A two grid solver for discretization of Maxwell's equations using hp-FE

Consider the following two problems:

Problem I: $\nabla \times \nabla \times \mathbf{E} - k^2 \mathbf{E} = \mathbf{J}$

Matrix form: Au = v

Two grid solver V-cycle:

$$TG = (I - \alpha_1 S_F A)(I - \alpha_2 S_{\nabla} A)(I - S_C A_C)$$

Problem II: $\nabla \times \nabla \times \mathbf{E} + \mathbf{E} = \mathbf{J}$

Matrix form: $\hat{A}u=v$

Two grid solver V-cycle:

$$\widehat{TG} = (I - \alpha_1 \hat{S}_F \hat{A})(I - \alpha_2 \hat{S}_\nabla \hat{A})(I - \hat{S}_C \hat{A}_C)$$

Theorem: If h is small enough, then:

$$\parallel TGe^{(n)}\parallel \leq \parallel \widehat{TG}e^{(n)}\parallel + Ch$$

Notice that C is independent of h and p.

A TWO GRID SOLVER FOR ELECTRODYNAMICS

A two grid solver for discretization of Maxwell's equations using $hp ext{-FE}$

Helmholtz decomposition:

$$H_D(\operatorname{curl};\Omega) = (Ker(\operatorname{curl})) \oplus (Ker(\operatorname{curl}))^{\perp}$$

We define the following subspaces (T = grid, K = element, v = vertex, e = edge):

$$\Omega_{k,i}^v = \operatorname{int}(\bigcup \{\bar{K} \in T_k : v_{k,i} \in \partial K\}) \; \; ; \; \; \Omega_{k,i}^e = \operatorname{int}(\bigcup \{\bar{K} \in T_k : e_{k,i} \in \partial K\})$$

Domain decomposition

$$M_{k,i}^v = \{u \in M_k : \operatorname{supp}(u) \subset \Omega_{k,i}^v\} \;\; ; \;\; M_{k,i}^e = \{u \in M_k : \operatorname{supp}(u) \subset \Omega_{k,i}^e\}$$

Nedelec's elements decomposition

$$W_{k,i}^v = \{u \in W_k : \text{supp}(u) \subset \Omega_{k,i}^v\} \; ; \; W_{k,i}^e = \{u \in W_k : \text{supp}(u) \subset \Omega_{k,i}^e\} = \emptyset$$

Polynomial spaces decomposition

Hiptmair proposed the following decomposition of M_k :

$$M_k = \sum_e M_{k,i}^e + \sum_v oldsymbol{
abla} W_{k,i}^v$$

Arnold et. al proposed the following decomposition of M_k :

$$M_k = \sum_v M_{k,i}^v$$

A TWO GRID SOLVER FOR ELECTRODYNAMICS

Plane Wave incident into a screen (diffraction problem)

Convergence history (tolerance error= 0.1 %)

Second component of electric field

Final hp grid

A TWO GRID SOLVER FOR ELECTRODYNAMICS

Guiding automatic hp-refinements

Diffraction problem. Guiding hp-refinements with a partially converged solution.

A TWO GRID SOLVER FOR ELECTRODYNAMICS

3D EM Model Problem

A TWO GRID SOLVER FOR ELECTRODYNAMICS

Selection of patches (for block Jacobi smoother)

Three examples of patches (blocks) for the Block Jacobi smoother:

Example 1: span of basis functions corresponding to element stiffness matrices for all elements adjacent to a vertex.

Example 2: span of basis functions with support contained in the support of a fine grid vertex node basis function.

Example 3: span of basis functions corresponding to an element stiffness matrix.

A TWO GRID SOLVER FOR ELECTRODYNAMICS

Performance of different smoothers 3D EM Model Problem

ELECTROMAGNETIC APPLICATIONS

Design of an initial uniform hp-grid.

3D EM Model Problem

(length of main diagonal of the cube varying from 1 to 50 wavelengths)

Nr. of λ vs p		p=1	p =2	p =3	p=4	p=5
1	ERROR	5.0%	4.2 %	1.2%	1.8%	0.3 %
	D.O.F.	40K	946	1033	308	548
2	ERROR	5.0%	4.2 %	2.9 %	1.9%	0.3 %
	D.O.F.	(>300K)	6427	2764	2226	4109
4	ERROR	5.0%	5.0 %	5.0 %	1.9%	1.2 %
	D.O.F.	(>2300K)	(>82K)	12K	14K	12K
8	ERROR	5.0%	5.0 %	5.0 %	5.0 %	2.8 %
	D.O.F.	(>20M)	(>650K)	(>167K)	(>71K)	51K
50	ERROR	5.0%	5.0 %	5.0 %	5.0 %	5.0 %
	D.O.F.	(>5000M)	(>122M)	(>25M)	(>14M)	(>9.5M)

Large p controls dispersion error