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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Time Harmonic Maxwell’s Equations:

∇× E = −jωµH

∇× H = (σ + jωε)E + Jimp

Reduced Wave Equation:
E-Formulation H-Formulation

∇×

(

1

µ
∇ × E

)

−(ω2ε−jωσ)E = −jωJ imp ; ∇×

(

1

σ + jωε
∇ × H

)

+jωµH = ∇×
1

σ + jωε
J imp

Boundary Conditions (BC):

• Perfect Electric Conductor Surface:

n × E = 0 ; n · H = 0

• Idealized Antennas (Impressed Surface Electric Current):

n ×
1

µ
∇× E = −jωJimp

S ; n × H = Jimp
S
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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation

The reduced wave equation in Ω,

E-Formulation: ∇ ×

(

1

µ
∇ × E

)

− (ω2ε − jωσ)E = −jωJ imp

H-Formulation: ∇ ×

(

1

σ + jωε
∇ × H

)

+ jωµH = ∇ ×
1

σ + jωε
J imp

Variational formulation:

E-Formulation:



























Find E ∈ HD(curl; Ω) such that:
∫

Ω

1

µ
(∇ × E)(∇ × F̄) dV −

∫

Ω

(ω2ε − jωσ)E · F̄ dV =

−jω

∫

Ω

Jimp · F̄ dV + jω

∫

ΓN

Jimp
S · F̄ dS ∀ F ∈ HD(curl; Ω)

H-Formulation:



























Find H ∈ H̃S + HD(curl; Ω) with J̃imp
S = n × H|S and such that:

∫

Ω

1

σ + jωε
(∇ × H)(∇ × F̄) dV + jω

∫

Ω

µH · F̄ dV =
∫

Ω

∇ × (
1

σ + jωε
Jimp) · F̄ dV ∀ F ∈ HD(curl; Ω)
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MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

Variational formulation in cylindrical coordinates
Using cylindrical coordinates (ρ, φ, z):

Eφ-Formulation:



























Find Eφ ∈ H̃1

D
(Ω) such that:

∫

Ω

1

µ
(
∂Eφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρEφ)

∂ρ

∂(ρF̄φ)

∂ρ
) dV −

∫

Ω

k2Eφ · F̄φ dV =

−jω

∫

Ω

J imp
φ · F̄φ dV + jω

∫

ΓN

J imp
φ,S · F̄φ dS ∀ Fφ ∈ H̃1

D
(Ω) .

Eρ,z-Formulation:



























Find E = (Eρ, 0, Ez) ∈ H̃D(curl; Ω) such that:
∫

Ω

1

µ
(
∂Eρ

∂z

∂F̄ρ

∂z
+

∂Ez

∂ρ

∂F̄z

∂ρ
) − k2

∫

Ω

EρF̄ρ + EzF̄z dV = −jω

∫

Ω

J imp
ρ

F̄ρ + J imp
z

F̄z dV +

jω

∫

ΓN

J imp
ρ,S F̄ρ + J imp

z,S F̄z dS ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

Hφ-Formulation:































Find Hφ ∈ f1(J
imp
ρ,S , J imp

z,S ) + H̃1

D
(Ω) such that:

∫

Ω

1

σ + jωε
(
∂Hφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρHφ)

∂ρ

∂(ρF̄φ)

∂ρ
) dV − jω

∫

Ω

µHφ · F̄φ dV =

∫

Ω

1

σ + jωε
(
∂J imp

ρ

∂z
−

∂J imp
z

∂ρ
)F̄φdV ∀ Fφ ∈ H̃1

D
(Ω) .

Hρ,z-Formulation:































Find H = Hρ, 0, Hz) ∈ f2(J
imp
φ,S ) + H̃D(curl; Ω) such that:

∫

Ω

1

σ + jωε
(
∂Hρ

∂z

∂F̄ρ

∂z
+

∂Hz

∂ρ

∂F̄z

∂ρ
) − jω

∫

Ω

µ(HρF̄ρ + HzF̄z) dV =

∫

Ω

1

σ + jωε
(
∂Jφ

∂z
F̄ρ +

1

ρ

∂(ρJ imp
φ )

∂ρ
F̄z) dV ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .
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TOWARDS CERTIFIED SOLUTIONS

Sources of Error

Physical (Real) Problem
Exact Geometry
Exact Physics
Exact Instruments
No Boundaries

No Errors in the Solution

−→

Mathematical Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Some Boundaries

Errors Associated to:
Geometry
Approximations
Coupling Physics
Material Coefficients

−→

Computational Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Boundary Conditions

Errors Associated to:
Mathematical Modeling
Geometry and BC’s
The Code (Bugs)
Discretization

The University of Texas at Austin
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TOWARDS CERTIFIED SOLUTIONS

Sources of Error

Computational Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Boundary Conditions

Solution is Not Exact Due to
Errors in:

• Mathematical Modeling

• Geometry and BC’s

• The Code (Bugs)

• Discretization
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TOWARDS CERTIFIED SOLUTIONS

Discretization Error

The self-adaptive goal-oriented hp-adaptive strategy provides a very
accurate built-in discretization error estimator.

Coarse grid Fine grid
(hp) (h/2, p + 1)

-

global hp-refinement

Discretization Error Estimate for Coarse Grid =
Fine Grid Solution - Coarse Grid Solution

The University of Texas at Austin
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TOWARDS CERTIFIED SOLUTIONS

Sources of Error

Computational Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Boundary Conditions

Solution is Not Exact Due to
Errors in:

• Mathematical Modeling

• Geometry and BC’s

• The Code (Bugs)

• Discretization
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TOWARDS CERTIFIED SOLUTIONS

Avoiding Errors in the Code Using Benchmarking Examples

Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz)

Solenoid Antenna Toroid Antenna
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TOWARDS CERTIFIED SOLUTIONS

Sources of Error

Computational Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Boundary Conditions

Solution is Not Exact Due to
Errors in:

• Mathematical Modeling

• Geometry and BC’s

• The Code (Bugs)

• Discretization

The University of Texas at Austin
7

High Performance Finite Element Software



David Pardo 22 Feb 2005

TOWARDS CERTIFIED SOLUTIONS

Avoiding Errors in the Code Using Benchmarking Examples

Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz) in Presence of
a Conductive Mandrel

Solenoid Antenna Toroid Antenna
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Analytical solution

Mandrel Resisitivity: 10−7
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Analytical solution

Mandrel Resisitivity: 10−7
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TOWARDS CERTIFIED SOLUTIONS

Summary

Computational Problem
Approx. Geometry
Maxwell’s Equations
Perfect Instruments
Boundary Conditions

Solution is Not Exact Due to
Errors in:

• Mathematical Modeling

• Geometry and BC’s

• The Code (Bugs)

• Discretization

The University of Texas at Austin
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THROUGH CASING RESISTIVITY INSTRUMENTS
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Axisymmetric 3D problem.

Five different materials.

Size of computational domain:
SEVERAL MILES.

Material properties varying by
up to TEN orders of magnitude
(10000000000!!!).

Objective: Determine
Second Difference of Potential
Receiving Electrodes.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Logging Through Casing (Benchmark Problem)
Rock Formation: Homogeneous Media
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Kaufmann Approx. Formula
Exact 2nd Derivative
Exact 2nd Diff. of Pot.
Numerical 2nd Diff. of Pot.

The second vertical difference of the Electric Potential is proportional to the formation
conductivity.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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Exact solution for one layer formation
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Electrodes at the borehole wall
Exact solution for one layer formation

Resistivity of casing = 10−6 Resistivity of casing = 10−7
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THROUGH CASING RESISTIVITY INSTRUMENTS

Approximation Error
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THROUGH CASING RESISTIVITY INSTRUMENTS

Damaged Casing
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THROUGH CASING RESISTIVITY INSTRUMENTS

Damaged Casing
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Perfect casing
Damaged casing
Damaged casing using a calibrated tool
Exact solution for one layer formation

In the presence
of damaged
casing, the use
of calibrated
instruments is
essential.
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THROUGH CASING RESISTIVITY INSTRUMENTS
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Axisymmetric 3D problem.

Toroid Antennas.

Size of computational domain:
SEVERAL MILES.

Different frequencies.

Material properties varying by
up to NINE orders of
magnitude (1000000000!!!).

Objective: Determine
First Difference of Electric and
Magnetic Fields.
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THROUGH CASING RESISTIVITY INSTRUMENTS

First Difference of Electric Field at Different Frequencies
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Toroid antennas are more sensitive to the rock formation resistivity when
located on the borehole’s wall
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THROUGH CASING RESISTIVITY INSTRUMENTS

First Difference of Magnetic Field at Different Frequencies
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THROUGH CASING RESISTIVITY INSTRUMENTS

Electromagnetic Fields at Different Frequencies
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Electromagnetic
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most constant
for frequencies
below 1 kHz. A
sudden drop in
the amplitude
occurs at fre-
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20 kHz.
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THROUGH CASING RESISTIVITY INSTRUMENTS
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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If the transmitter antenna is located on the surface of a cased well, the
received EM signal within the borehole is too weak.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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If the transmitter antenna is located on the surface of a cased well, the
received cross-well EM signal is too weak.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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If the transmitter antenna is located on the surface of a cased well, a 60
meters layer of water cannot be detected by using cross-well EM signals.
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THROUGH CASING RESISTIVITY INSTRUMENTS

Final Log Obtained by Our Finite Element Software
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If the transmitter antenna is located downhole a cased well, it is feasible
to perform meaningful cross-well EM measurements.
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LOGGING INSTRUMENTS WITH A MANDREL
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LOGGING INSTRUMENTS WITH A MANDREL

Eφ (normalized) for a solenoid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Eφ (normalized) for a solenoid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Eφ (normalized) for a solenoid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Hφ (normalized) for a toroid antenna
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LOGGING INSTRUMENTS WITH A MANDREL

First Difference of Ez (normalized) for a toroid antenna
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CONCLUSIONS

• It is possible to simulate a variety of EM logging instruments
by using the self-adaptive goal-oriented hp-FEM.

• For TCRT, preliminary simulations suggest to

1. Place antennas on the borehole’s wall,
2. use calibrated instruments,
3. use low frequencies (typically below 5 kHz),
4. use downhole antennas for cross-well EM measurements, and
5. avoid the use of cross-well EM measurements for assesment of

water injection.

• For LWD instruments, preliminary simulations suggest to

1. Use both solenoid and toroid antennas,
2. use magnetic buffers to amplify EM signals, and
3. compute first differences of EM fields.

Institute for Computational Engineering and Sciences

The University of Texas at Austin
30

High Performance Finite Element Software



FUTURE WORK

Within the next 3 months

• Implementation of the goal-oriented self-adaptive algorithm
for 2D edge elements. It would allow us to solve 2.5 D
problems.

• Parallel implementation of the 2D code (Maciek Paszynski).

Long term goals

• Solve 3D problems with casing at DC.

• Solve 3D problems with mandrel at AC.

• Invert coupled sonic and EM measurements in 2D.
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