Through Casing Resistivity Logging Problem (DC)

Axisymmetric 3D problem.

Five different materials.

Size of computational domain: SEVERAL MILES.

Material properties varying by up to TEN orders of magnitude (100000000000!!!).

Objective: Determine Second Difference of Potential Receiving Electrodes.

Through Casing Resistivity Logging Problem (DC)

Through Casing Resistivity Logging Problem (DC)

SIG Meeting (ConocoPhillips)

A New Fully Automatic Goal-Oriented hp-Adaptive Finite Element Strategy for Simulations of Resistivity Logging Instruments.

David Pardo (dzubiaur@yahoo.es), L. Demkowicz, C. Torres-Verdin, L. Tabarovsky, A. Bespalov

Collaborators: D. Xue, J. Kurtz, M. Paszynski, Ch. Larson, W. Rachowicz, A. Zdunek, L.E. Garcia-Castillo

Acknowledgment: Baker-Atlas, C. Torres-Verdin

October 27, 2004

Institute for Computational Engineering and Sciences (ICES)

The University of Texas at Austin

OVERVIEW

- 1. Motivation: A Through Casing Resistivity Tool Problem.
- 2. Conductive Media Equation.
- 3. hp-Finite Elements.
- 4. Fully Automatic Energy Norm hp-Adaptive Strategy.
- 5. Fully Automatic Goal-Oriented hp-Adaptive Strategy.
- 6. Numerical Results: DC, AC, 2D, and 3D problems
- 7. Conclusions and Future Work.

MOTIVATION

Axisymmetric 3D problem.

Five different materials.

Size of computational domain: SEVERAL MILES.

Material properties varying by up to TEN orders of magnitude (100000000001!!).

Objective: Determine Second Difference of Potential Receiving Electrodes.

CONDUCTIVE MEDIA EQUATION

Derivation of Conductive Media Equation:

Maxwell's Equations:

$$\left\{ egin{aligned}
abla imes \mathrm{H} &= (\sigma - j\omega\epsilon)\mathrm{E} + \mathrm{J} \
abla imes \mathrm{E} &= (j\omega\mu\epsilon)\mathrm{H} \; , \
abla \cdot \epsilon \mathrm{E} &=
ho \; , \
abla \cdot \mu \mathrm{H} &= 0 \; , \end{aligned}
ight.$$

Derivation of Conductive Media Equation:

Maxwell's Equations:

$$\begin{cases} \nabla \times \mathbf{H} = (\sigma - j\omega\epsilon)\mathbf{E} + \mathbf{J} \\ \nabla \times \mathbf{E} = (j\omega\mu\epsilon)\mathbf{H} , & \stackrel{\boldsymbol{\omega}=0}{\Longrightarrow} \end{cases} \begin{cases} \nabla \times \mathbf{H} = \sigma\mathbf{E} + \mathbf{J} \\ \nabla \times \mathbf{E} = 0 , \\ \nabla \cdot \epsilon\mathbf{E} = \rho , \\ \nabla \cdot \mu\mathbf{H} = 0 , \end{cases} \\ \nabla \cdot \mu\mathbf{H} = 0 .$$

Steady state:

$$\left\{egin{aligned}
abla imes \mathrm{H} &= \sigma \mathrm{E} + \mathrm{J} \
abla imes \mathrm{E} &= 0 \ , \
abla \cdot \epsilon \mathrm{E} &=
ho \ , \
abla \cdot \mu \mathrm{H} &= 0 \ . \end{aligned}
ight.$$

Derivation of Conductive Media Equation:

Maxwell's Equations: Steady state:

$$\left\{egin{aligned}
abla imes \mathrm{H} &= \sigma \mathrm{E} + \mathrm{J} \
abla imes \mathrm{E} &= 0 \ , \
abla \cdot \epsilon \mathrm{E} &=
ho \ , \
abla \cdot \mu \mathrm{H} &= 0 \ . \end{aligned}
ight.$$

Since $\nabla \times \mathbf{E} = 0$, then $\mathbf{E} = -\nabla \Psi$ for some Ψ :

$$\left\{ egin{aligned}
abla imes \mathbf{H} &= -\sigma
abla \Psi + \mathbf{J} \
abla \cdot \epsilon
abla \Psi &=
ho \; , \
abla \cdot \mu \mathbf{H} &= 0 \; . \end{aligned}
ight.$$

Derivation of Conductive Media Equation:

Maxwell's Equations: Steady state:

$\left\{ egin{aligned} abla imes H &= (\sigma - j\omega\epsilon)E + J \ abla imes E &= (j\omega\mu\epsilon)H \;, & \ abla imes E &= 0 \;, \ abla imes \epsilon E &= ho \;, \ abla imes \epsilon H &= \sigma E + J \ abla imes E &= 0 \;, \ abla imes \epsilon E &= 0 \;, \ abla im$

$$\left\{ egin{aligned}
abla imes \mathrm{H} &= \sigma \mathrm{E} + \mathrm{J} \
abla imes \mathrm{E} &= 0 \; , \
abla \cdot \epsilon \mathrm{E} &=
ho \; , \
abla \cdot \mu \mathrm{H} &= 0 \; . \end{aligned}
ight.$$

Since $\nabla \times \mathbf{E} = 0$, then $\mathbf{E} = -\nabla \Psi$ for some Ψ :

$$\begin{cases} \nabla \times \mathbf{H} = -\sigma \nabla \Psi + \mathbf{J} \\ -\nabla \cdot \epsilon \nabla \Psi = \rho \ , \\ \nabla \cdot \mu \mathbf{H} = 0 \ . \end{cases} \qquad \overset{\mathbf{\nabla} \circ}{\Longrightarrow} \qquad \begin{cases} -\nabla \cdot \sigma \nabla \Psi = \nabla \cdot \mathbf{J} \ , \\ -\nabla \cdot \epsilon \nabla \Psi = \rho \ , \\ \nabla \cdot \mu \mathbf{H} = 0 \ . \end{cases}$$

Derivation of Conductive Media Equation:

Maxwell's Equations: Steady state:

$$\left\{ egin{aligned}
abla imes \mathbf{H} &= (\sigma - j\omega\epsilon)\mathbf{E} + \mathbf{J} \\
 \nabla imes \mathbf{E} &= (j\omega\mu\epsilon)\mathbf{H} \;, & \stackrel{\textstyle \omega = 0}{\Longrightarrow} \end{aligned}
ight. \quad \left\{ egin{aligned}
abla imes \mathbf{H} &= \sigma\mathbf{E} + \mathbf{J} \\
 \nabla imes \mathbf{E} &= 0 \;, \\
 \nabla imes \mathbf{E} &= \rho \;, \\
 \nabla imes \mathbf{E} &= \rho \;, \\
 \nabla imes \mathbf{H} &= \sigma\mathbf{E} + \mathbf{J} \\
 \nabla imes \mathbf{E} &= 0 \;, \\
 \nabla imes \mathbf{E} &= \rho \;, \\
 \nabla imes \mu\mathbf{H} &= 0 \;. \end{aligned}
ight.$$

$$\nabla \cdot \epsilon \mathbf{E} = \rho$$
,

$$\nabla \cdot \mu \mathbf{H} = 0$$
,

$$abla imes ext{H} = \sigma ext{E} + ext{J}$$

$$\nabla \times \mathbf{E} = 0$$
,

$$\nabla \cdot \epsilon \mathbf{E} = \rho$$

$$\nabla \cdot \mu \mathbf{H} = 0$$
.

Since $\nabla \times \mathbf{E} = 0$, then $\mathbf{E} = -\nabla \Psi$ for some Ψ :

$$\begin{cases} \nabla \times \mathbf{H} = -\sigma \nabla \Psi + \mathbf{J} \\ -\nabla \cdot \epsilon \nabla \Psi = \rho \;, \\ \nabla \cdot \mu \mathbf{H} = 0 \;. \end{cases} \quad \overset{\boldsymbol{\nabla} \circ}{\Longrightarrow} \quad \begin{cases} -\nabla \cdot \sigma \nabla \Psi = \nabla \cdot \mathbf{J} \;, \\ -\nabla \cdot \epsilon \nabla \Psi = \rho \;, \\ \nabla \cdot \mu \mathbf{H} = 0 \;. \end{cases}$$

$$-\nabla \cdot \sigma \nabla \Psi = \nabla \cdot \mathbf{J}$$

CONDUCTIVE MEDIA EQUATION

Boundary Conditions

Essential (Dirichlet BC) to make the computational domain finite.

No BC for the center of axisymmetry.

An extra boundary term to model the source electrode.

CONDUCTIVE MEDIA EQUATION

Variational Formulation for $\left| -
abla \cdot \sigma
abla \Psi =
abla \cdot \mathrm{J} \right|$

3D Variational Form:

$$\left\{egin{aligned} ext{Find }\Psi\in\Psi_D+V ext{ such that:} \ &\int_\Omega\sigma
abla\Psi
abla\xi\;dV=\int_\Omega
abla\cdot\operatorname{J}\xi\;dV+\int_{\Gamma_N}g\;\xi\;dS \quad orall\xi\in V\;. \end{aligned}
ight.$$

Using Cylindrical Coordinates:

$$\left\{ \begin{array}{l} \text{Find } \Psi \in \Psi_D + V \text{ such that:} \\ \int_\Omega \sigma \nabla \Psi \nabla \xi \; \rho \; d\rho d\psi dz = \int_\Omega \nabla \cdot \operatorname{J} \; \xi \; \rho \; d\rho d\psi dz + \int_{\Gamma_N} g \; \xi \; dS \quad \forall \xi \in V \; . \end{array} \right.$$

Using a Different Notation:

$$\left\{egin{aligned} ext{Find }\Psi\in\Psi_D+V ext{ such that:}\ b(\Psi,\xi)=f(\xi) & orall \xi\in V \ . \end{aligned}
ight.$$

HP-FINITE ELEMENTS

Different refinement strategies for finite elements:

6

HP-FINITE ELEMENTS

EXPONENTIAL CONVERGENCE RATES EXPONENTIAL CONVERGENCE RATES EXPONENTIAL CONVERGENCE RATES

for problems WITH and without SINGULARITIES

if we orchestrate an optimal distribution of h and p within the same grid

Smaller dispersion (pollution) error

as p increases.

More geometrical details captured

as h decreases.

Energy norm based fully automatic *hp*-adaptive strategy

Orthotropic heat conduction example (Sandia National Laboratories)

$$\begin{aligned} & \textbf{Equation: } \nabla(\mathbf{K}\nabla u) = f^{(k)} \\ & \mathbf{K} = \mathbf{K}^{(k)} = \begin{bmatrix} K_x^{(k)} & 0 \\ 0 & K_y^{(k)} \end{bmatrix} \\ & K_x^{(k)} = (25,\,7,\,5,\,0.2,\,0.05) \\ & K_y^{(k)} = (25,\,0.8,\,0.0001,\,0.2,\,0.05) \end{aligned}$$

Final hp-Grid

FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Convergence comparison

Orthotropic heat conduction example

Waveguide example with six iris

Geometry of a cross section of the rectangular waveguide

RETURN LOSS OF THE WAVEGUIDE

H-plane six resonant iris filter.

Dominant mode (source): TE_{10} -mode.

Dimensions $\approx 20 \times 2 \times 1$ cm.

Operating Frequency $\approx 8.8 - 9.6$ Ghz

Cutoff frequency ≈ 6.56 Ghz

FEM solution for frequency = 8.72 **Ghz**

FEM solution for frequency = 8.82 **Ghz**

FEM solution for frequency = 9.58 **Ghz**

FEM solution for frequency = 9.71 Ghz

9.1 9.2 9.3 Frequency (Ghz) 9.5

8.8

8.9

FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Petroleum Engineering Applications

Results are not good. Why?

We are not interested in the energy norm error, but in the solution (or second difference of potential, etc.) at the receiving electrodes.

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean Goal-Oriented Adaptivity?

We consider the following problem:

$$egin{cases} \mathsf{Find}\ \Psi \in V \ \mathsf{such\ that:} \ \ b(\Psi, \xi) = f(\xi) \quad orall \xi \in V \ . \end{cases}$$

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean *Goal-Oriented* Adaptivity?

We consider the following problem:

 $\left\{egin{array}{ll} {\sf Find}\ \Psi\in V\ {\sf such\ that:} & MISLEADING!!! \ b(\Psi,\xi)=f(\xi)\ \ orall \xi\in V\ . \end{array}
ight.$

The problem we really want to solve is:

 $\left\{egin{array}{l} {\sf Find}\, {m L}({m \Psi}), \, {\sf where}\,\, \Psi \in V \,\, {\sf such} \,\, {\sf that:} \ \ b(\Psi, \xi) = f(\xi) \quad orall \xi \in V \,\, , \end{array}
ight.$

where $L(\Psi)$ is our goal.

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean Goal-Oriented Adaptivity?

We consider the following problem:

$$\left\{egin{array}{ll} ext{Find } \Psi \in V ext{ such that:} & extit{MISLEADING}!!! \ b(\Psi, \xi) = f(\xi) & orall \xi \in V \ . \end{array}
ight.$$

The problem we *really* want to solve is:

$$\left\{egin{aligned} extstyle extsty$$

where $L(\Psi)$ is our goal.

HP goal-oriented adaptivity consists of constructing an optimal grid:

$$rg\min_{hp:|L(e_{hp})|\leq TOL} N_{hp}$$

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

$$\left\{egin{aligned} ext{Find } L(\Psi) ext{, where } \Psi \in V ext{ such that:} \ b(\Psi, \xi) = f(\xi) & orall \xi \in V ext{ .} \end{aligned}
ight.$$

We define residual $r_{hp}(\xi)=b(e_{hp},\xi)$. We seek for solution G of:

$$\left\{egin{aligned} ext{Find } G \in V ext{ such that:} \ r(G) = L(e_{hp}) \ . \end{aligned}
ight.$$

This is necessarily solved if we find the solution of the *dual* problem:

$$\left\{egin{aligned} ext{Find } G \in V ext{ such that:} \ b(\Psi,G) = L(\Psi) & orall \Psi \in V \ . \end{aligned}
ight.$$

Notice that L(e) = b(e, G).

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Algorithm for Goal-Oriented Adaptivity

Compute $e=e_{h/2,p+1}-e_{hp}$, and $\epsilon=G_{h/2,p+1}-G_{hp}$. Use estimate $|L(e)|=|b(e,\epsilon)|\leq \sum_K |b_K(e,\epsilon)|$. Apply the fully automatic hp-adaptive algorithm.

NUMERICAL RESULTS

A Direct Current (DC) Resistivity Logging Problem (Baker-Atlas)

Axisymmetric 3D problem.

Four different materials.

Material properties varying by up to FIVE orders of magnitude.

Objective:

Determine Electric Current on Receiving Electrodes.

NUMERICAL RESULTS

Convergence History

DC Resistivity Logging Problem with Different Materials.

Distance Between Source and Receiving Electrode: 150cm.

 $|L(e)| \leq \sum_K |b(e,\epsilon)| =$ Error Estimate.

Relative Error (in %) vs dB

$$10^{-6}$$
 % = 10^{-7} dB

$$10^{-4} \% = 10^{-5} \text{ dB}$$

$$10^{-2} \% = 10^{-3} \text{ dB}$$

$$10^0 \% = 10^{-1} \text{ dB}$$

$$10^2 \% = 10^{-1} \text{ dB}$$

NUMERICAL RESULTS

Final hp-grid (Zooms by factor of 10)

NUMERICAL RESULTS

Final hp-grid (Zooms by factor of 10)

NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software

Distance between source and first receiving electrode:

0.5 m -light blue-; 1.0 m -dark blue-; 1.5 m -black-

0.5 m -red-; 1.0 m -magenta-

NUMERICAL RESULTS

NUMERICAL RESULTS

NUMERICAL RESULTS

NUMERICAL RESULTS

NUMERICAL RESULTS

CONCLUSIONS AND FUTURE WORK

Conclusions

- The Fully Automatic Goal-Oriented hp-Adaptive Algorithm converges exponentially in terms of the quantity of interest vs the CPU time.
- We accurately simulated challenging Resistivity Logging Problems.

Future Work

- To improve performance of the self-adaptive goal-oriented algorithm.
- To extend the self-adaptive goal-oriented algorithm to simulate challenging 3D and inverse petroleum engineering problems.

Institute for Computational Engineering and Sciences