Through Casing Resistivity Logging Problem (DC)

Axisymmetric 3D problem.

25cm.25 cm.

Five different materials.

Size of computational domain:
SEVERAL MILES.

150 cm.

100 cm.

Material properties varying by
up to TEN orders of magnitude
(20000000000!!).

50 cm.

0.1 0hmm

Objective: Determine
Second Difference of Potential
Receiving Electrodes.
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Through Casing Resistivity Logging Problem (DC)

Approximation Error
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1. Motivation: A Through Casing Resistivity Tool Problem.
2. Conductive Media Equation.

3. hp-Finite Elements.

4. Fully Automatic Energy Norm hp-Adaptive Strategy.

5. Fully Automatic Goal-Oriented hp-Adaptive Strategy.

6. Numerical Results: DC, AC, 2D, and 3D problems

7. Conclusions and Future Work.
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MOTIVATION

Axisymmetric 3D problem.

25cm.25 cm.

Five different materials.

Size of computational domain:
SEVERAL MILES.

150 cm.

100 cm.

Material properties varying by
up to TEN orders of magnitude
(20000000000!!).

50 cm.

Objective: Determine
Second Difference of Potential
Receiving Electrodes.

0.1 0hmm

The University of Texas at Austin High Performance Finite Element Software
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CONDUCTIVE MEDIA EQUATION

Derivation of Conductive Media Equation:

Maxwell’s Equations:

rVXH:(a—jwe)E-I—J
V XE = (jwpe)H ,
V:-eE=p,

| V-prH=0,
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CONDUCTIVE MEDIA EQUATION

Derivation of Conductive Media Equation:

Maxwell’s Equations:
(V xH= (0 — jwe)E+J
V XE = (jwpe)H , w=0

) p—
V:-eE=p,

| V-prH=0,

Steady state:

(VxH=0E+1J

< VXE=0,
V.-eE=p,

| V-uH=0.
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CONDUCTIVE MEDIA EQUATION

Derivation of Conductive Media Equation:

Maxwell’s Equations: Steady state:

(VX H= (06— jwe)E+J (VxH=0E+1J
E = (jwpe)H w=0 —

<V>< (Jwpe)H , s <VXE 0,

V.:eE=p, V-.-eE=p,

| V-uH=0, | V-pH=0.

SinceV X E =0,then E = —VW for some V:

(VXH=—0VVU+]
§ —V.eV¥ =p,
| V-uH =0.
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Derivation of Conductive Media Equation:

Maxwell’s Equations: Steady state:

(VX H= (06— jwe)E+J (VxH=0E+1J
E = (jwpe)H w=0 —

<V>< (Jwpe)H , s <VXE 0,

V.:eE=p, V-.-eE=p,
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(VXH=—0VU +] ([ V.oVU=V.J,
§ —V:.eVU =p, l—O} § —V.eVU =p,
| V-uH =0. | V-uH =0.
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CONDUCTIVE MEDIA EQUATION

Derivation of Conductive Media Equation:

Maxwell’s Equations: Steady state:

(VX H= (06— jwe)E+J (VxH=0E+1J
E = (jwpe)H w=0 —

<V>< (Jwpe)H , s <VXE 0,

V.:eE=p, V-.-eE=p,

| V-uH=0, | V-pH=0.

SinceV X E =0,then E = —VW for some V:

(VXH=—0VU +] ([ V.oVU=V.J,
§ —V:.eVU =p, l—O} § —V.eVU =p,
| V-uH =0. | V-uH =0.

—V.oV¥ =V .J
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CONDUCTIVE MEDIA EQUATION

Boundary Conditions

Essential (Dirichlet BC) to make
the computational domain finite.

25cm.25cm.
- - »

150 cm.

100 cm.

No BC for the center of
axisymmetry.

50 cm.

An extra boundary term to model
the source electrode.

10hmm

ﬁ

10 cm.

High Performance Finite Element Software

The University of Texas at Austin
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CONDUCTIVE MEDIA EQUATION

Variational Formulation for| -V - oVW¥ =V - J

3D Variational Form:

Find ¢ € ¥ + V such that:

/aV\IJV&dV:/V-JédV—l-/ géds VvVeEeVvV.
Q Q I'n
Using Cylindrical Coordinates:

Find ¥ € ¥p + V such that:

/aV‘Pprdde,bdz:/V-prdpdtpdz—l—/ g&dsS VEeV.
Q Q T'n

Using a Different Notation:

{ Find ¥ € ¥ + V such that:
b(P,8) = f(§) VEe€V.
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HP-FINITE ELEMENTS

Different refinement strategies for finite elements:

Given initial grid

h-refined grid p-refined grid hp-refined grid
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HP-FINITE ELEMENTS

EXPONENTIAL CONVERGENCE RATES

EXPONENTIAL CONVERGENCE RATES
for problems WITH and without SINGULARITIES

if we orchestrate an optimal distribution of h and p
within the same grid

Smaller dispersion (pollution) error

as p increases.

More geometrical details captured

as h decreases.




David Pardo 27 Oct 2004

FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Energy norm based fully automatic hp-adaptive strategy

Coarse grids Fine grids
(hp) (h/2,p +1)

SOL. METHOD ON FINE GRIDS:
The University of Texas at Austin

global hp-refinement

global hp-refinement

A TWO GRID SOLVER

High Performance Finite Element Software
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Orthotropic heat conduction example (Sandia National Laboratories)

k=1

4

Equation: V(KVu) = f®
K® 0
0 K&
K® = (25,7, 5, 0.2, 0.05)
K" = (25, 0.8, 0.0001, 0.2, 0.05)

K=K® = Final hp-Grid

The University of Texas at Austin High Performance Finite Element Software
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

RELATIVE ERROR IN THE ENERGY NORM (%)
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Convergence comparison

Orthotropic heat conduction example

— h-Adaptivity
—— A priori hp—adaptivity
—— hp—Adaptivity

8000 27000 64000 125000 216000 343000 512000
NUMBER OF UNKNOWNS
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Waveguide example with six iris

Geometry of a cross section of the rectangular waveguide

| H-plane six resonant iris filter.

| Dominant mode (source): T E;p—mode.

EWICE)

| Dimensions = 20 X 2 X 1 cm.
| Operating Frequency = 8.8 — 9.6 Ghz

1 Cutoff frequency =~ 6.56 Ghz

8.8 8.9 9 91 92 93 94 95 96
Frequency (Ghz)

RETURN LOSS OF THE WAVEGUIDE

11
The University of Texas at Austin High Performance Finite Element Software
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

FEM solution for frequency = 8.72 Ghz

| He |

| Hy|

2 O O

VI Ha|*+|Hy|?

9 9.1 9.2 9.3 9.4 9.5 9.6
Frequency (Ghz)
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

FEM solution for frequency = 8.82 Ghz

| H |

| Hy|

VIH >+ Hy[?

9 9.1 9.2 9.3 9.4 9.5 9.6
Frequency (Ghz)
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

FEM solution for frequency = 9.58 Ghz

| H |

| Hy|

VIH >+ Hy[?
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

FEM solution for frequency = 9.71 Ghz

| He |

| Hy |

VIH >+ Hy[?

| (@B)

9 9.1 9.2 9.3 9.4 9.5
Frequency (Ghz)
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Fichera problem. Final Ap-grid.
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Fichera problem. Final Ap-grid.
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Fichera problem. Final Ap-grid.
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Fichera problem. Final Ap-grid.
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Fichera problem. Final Ap-grid.
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FULLY AUTOMATIC HP-ADAPTIVE STRATEGY

Petroleum Engineering Applications

AT b

Results are not good. Why?

We are not interested in the energy norm error, but in the
solution (or second difference of potential, etc.) at the
receiving electrodes.
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean Goal-Oriented Adaptivity?

We consider the following problem:

{ Find ¥ € V such that;
b(W,8) = f(§) VEeV.

22
The University of Texas at Austin High Performance Finite Element Software
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean Goal-Oriented Adaptivity?

We consider the following problem: (

{ Find ¥ € V such that: MISLEADING"Y
b(¥,8) = f(§) VE€V. .

The problem we really want to solve is:

{ Find L(¥), where ¥ € V such that:
b(v,8) =f(&) VeV,

where L(W¥) is our goal.

22
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

What does it mean Goal-Oriented Adaptivity?

N
!Z

We consider the following problem: ( §§
E

{ Find ¥ € V such that: MISLEADING!'JIE
/]

b(T, &) = f(§) VEeV. o) |k

PN

NN

The problem we really want to solve is:

==

{ Find L(¥), where ¥ € V such that:
b(¥,§) = f(§) VEeV,

where L(¥) is our goal.

el M 7 74\ NN |

HP goal-oriented adaptivity consists of
constructing an optimal grid:

E
/1
/
)
)
\
\
I

N 10 |

arg min Nhyp
hpi|L(eny)| <TOL
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

We consider the following problem (in variational form):

{ Find L(¥), where ¥ € V such that:
b(¥,&) = f(§) VEEV.

We define residual rp,(£) = b(enp, ). We seek for solution G of:

{ Find G € V such that:
r(G) = L(enp) -

This is necessarily solved if we find the solution of the dual problem:

Find G € V such that:
b(¥,G) =L(¥) VP e V.

Notice that L(e) = b(e, G).
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Mathematical Formulation (Goal-Oriented Adaptivity)

___ DIRECT PROBLEM .. DUAL PROBLEM

L(T)=b (T G)

24
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AUTOMATIC GOAL-ORIENTED HP-ADAPTIVITY

Algorithm for Goal-Oriented Adaptivity

Compute e = ep/2p+1 — €np, ANd € = G2 pr1 — Ghp.
Use estimate |L(e)| = |b(e,€)| < D i |br(e,€)].
Apply the fully automatic hp-adaptive algorithm.

25
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NUMERICAL RESULTS

A Direct Current (DC) Resistivity Logging Problem (Baker-Atlas)

=

B Axisymmetric 3D problem.
5

3 Four different materials.

£ .

IS
3 1 Ohmm o . . :

S Material properties varying by
£ up to FIVE orders of
s ~ magnitude.

| :
3
Objective:

0.1 Ohm m

Determine Electric Current on
Receiving Electrodes.

—
10 cm.

26
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NUMERICAL RESULTS

Convergence History

— Error Estimate
10" — Emor |L(e)

DC Resistivity Logging Problem
with Different Materials.

Distance Between Source and
Receiving Electrode: 150cm.

[L(e)] < Xk lb(e €

Error Estimate.

Relative Error (in %) vs dB
107%9% =10"" dB
104 % =10"°dB
1072% =10"3dB
10°% =101 dB
102% =10"1dB

Relative Error of | (in 20)

1125 1000 3375 8000 15625 27000
Number of unknowns N
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NUMERICAL RESULTS

Final hp-grid (Zooms by factor of 10)

28
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NUMERICAL RESULTS

Final hp-grid (Zooms by factor of 10)
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NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software
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NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software

15 | ‘
— Perfect Casing

05 1 10hmm

Position of Receiving Electrodes (z—axis)

_1 | | | | | |
-0 -9 -80 -70 60 50 40
Second Difference of Potential (dB scale)

Perfect Casing

31
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NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software

15

— Perfect Casing
— Imperfect Casing

05 1 10hmm

Position of Receiving Electrodes (z—axis)

_1 | | | | |
-0 -9 -8 -0 60  -50 Imperfect Casing
Second Difference of Potential (dB scale)
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NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software

15

— Perfect Casing
— Imperfect Casing
— Calibrated Logging Tool

05 1 10hmm

Position of Receiving Electrodes (z—axis)

_1 | | | | |
-0 -9 -8 -0 60  -50 Imperfect Casing
Second Difference of Potential (dB scale)
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NUMERICAL RESULTS

Description of Antennas

Magnetic Buffer
10000 Ohm m
10000 Rel. Perme.

15 cm

100 cm
10 cm

Borehole
0.1 Ohm m
Radius=10.8 cm

100 cm

50 cm

>

Radius 7.6 cm

Goal: To Compute First
Difference of Potential

on Receiving Electrodes

34
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NUMERICAL RESULTS

Final Log Obtained by Our Finite Element Software

2.5 . . ! .
— ABS VALUE
— REAL PART
2+ — IMAG PART 1

. 10hmm

Position of Receiving Electrode (z—axis)

-4 -2 0 2 4 6 8 10 12
First Difference of Potential (mV)

Frequency: 2 Mhz
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CONCLUSIONS AND FUTURE WORK

Conclusions

e The Fully Automatic Goal-Oriented hp-Adaptive Algorithm
converges exponentially in terms of the quantity of interest
vs the CPU time.

e We accurately simulated challenging Resistivity Logging
Problems.

Future Work

e To improve performance of the self-adaptive goal-oriented algorithm.

e To extend the self-adaptive goal-oriented algorithm to simulate
challenging 3D and inverse petroleum engineering problems.

Institute for Computational Engineering and Sciences

36




