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Outline
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Previous Work: 2D Dual-Laterolog (DLL)
• hp Adaptive Finite Element Method
• Embedded Post-Processing Method

3D Methodology and DLL Simulations
• Deviated Wells
• Eccentered Measurements 
• Iterative Solver
• Parallel Implementation

Conclusions and Future Work
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hp-FEM

The University of Texas at Austin

We vary locally the element size
h and the polynomial order of 
approximation p throughout
the grid

Optimal grids are automatically
generated by the hp-algorithm

The self-adaptive goal-oriented 
hp-FEM provides exponential 
convergence rates in terms of 
the CPU time vs. the error in
a user prescribed quantity of
interest
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Dual-Laterolog (DLL)
• Determination of Intensities (Wj)

of Bucking Currents
• Description of Tool

Focusing Conditions
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Post-Processing Method
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One problem with several RHSs

(1) Focusing conditions
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(2) Relationships between Wj

Total potential on Mi
� Superposition principle

A1'=1

A2' =1

A0=1

A2=1

A1=1

Synthetic Focusing (Cozzolino et al, 2007)

with c = 0.5
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Embedded Post-Processing Method (EPPM)

On a Grid
Solution

Solution
hp-Refined Grid

Optimal Grid,

Optimal Intensities    

& Solution

Error Smaller 
than 1%?

Optimal 
Refinements

Synthetic focusing method

Solutions for

Potential on Mi
(Superposition)

Focusing
conditions

Compute Wj

Solving one problem with several RHSs

Coarse Grid

No
Yes
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Simulating the DLL tool
Using the Tool Configuration of
Halliburton Energy Services’ DLLModel

The University of Texas at Austin
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Invaded Formation (Vertical Well)
Effects of Invasion: LLs

The University of Texas at Austin

Borehole: 0.1 m in radius
0.1 ohm-m in resistivity
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Anisotropic Formation (Vertical Well)

LLd: effects of anisotropy are 
negligible in conductive layer

Effects of anisotropy: LLs

The University of Texas at Austin
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• Deviated Wells
- Non-orthogonal system of coordinates
- Fourier series expansion
- Numerical results

• Eccentered Measurements

• Iterative Solver

• Parallel Implementation

The University of Texas at Austin

3D Methodology and DLL Simulations I
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3D Deviated Well
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Subdomain III
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Subdomain I Subdomain II

Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (�1, �2, �3)



7th Annual Formation Evaluation Consortium Meeting

3D Deviated Well

The University of Texas at Austin

Cartesian system of coordinates: (x1, x2, x3)
New non-orthogonal system of coordinates: (�1, �2, �3)

Constant material coefficients in the quasi-azimuthal direction �2

in the new non-orthogonal system of coordinates!!!!
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Final Variational Formulation
u f��
 
 �

The University of Texas at Austin

DC problem:

3D variational formulation in the new system of coordinates:
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Define Jacobian :

The same concept can be applied to AC problems
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Fourier Series Expansion in �2
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Fourier Series Expansion of a Function % in �2:

Final Variational Formulation after Fourier Series Expansion in �2:

because Fk�l(�NEW) = 0 for every | k � l | > 2.

Only Five Fourier Modes ( l ) are enough to represent �NEW EXACTLY for each k.

Therefore, we need to truncate only  Fourier Modes ( k ) for 3D solution.

� Mono-modal test function: 
2kj

kv v e ��
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Example (9 Fourier Modes)
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�4 < k < 4

: represents a 2D stiffness matrixk
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Verification of 3D Simulation

Relative errors of laterolog measurements
in a homogeneous formation

� = 0, 30 and 60 degrees

The University of Texas at Austin

Reference Solutions: Solutions for 0( deviated well
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Convergence History of LLd Logs

Dip angle: 45 degrees
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Convergence History of LLd Logs

Dip angle: 45 degrees
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Convergence History of LLd Logs

Dip angle: 45 degrees
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Convergence History of LLd Logs

Dip angle: 45 degrees
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• Deviated wells

• Eccentered Measurements
- Non-orthogonal system of coordinates
- Fourier series expansion
- Numerical results

• Iterative Solver 

• Parallel Implementation

The University of Texas at Austin

3D Methodology and DLL Simulations II
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3D Eccentered Well
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New non-orthogonal system of coordinates: (�1, �2, �3)
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Eccentricity
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• Deviated Wells

• Eccentered Measurements

• Iterative Solver 
- 2D block Jacobi pre-conditioner
- Numerical results

• Parallel Implementation

The University of Texas at Austin

3D Methodology and DLL Simulations III



7th Annual Formation Evaluation Consortium Meeting

Iterative Solver I
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Iterative Solver for Fast 3D Simulation:
- 2D Block Jacobi Pre-Conditioner
- Krylov-subspace optimization method (BI-Conjugate Gradient)
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(deviated well) 2D Block Jacobi Pre-Conditioner:

The University of Texas at Austin

: represents a 2D stiffness matrixk
ld
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Iterative Solver II (results)

The University of Texas at Austin
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• Deviated wells

• Eccentered Measurements

• Iterative Solver 

• Parallel Implementation
- Shared domain decomposition
- Numerical results

The University of Texas at Austin

3D Methodology and DLL Simulations IV
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3D Parallelization Implementation

The University of Texas at Austin

Distributed Domain
Decomposition Shared Domain Decomposition!!
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3D Parallelization Implementation

The University of Texas at Austin

Scalability of the Parallel Multi-Frontal Solver (Direct Solver)

Parallel computations performed on Texas Advance Computing
Center (TACC) 60% relative efficiency up to 200 processors.
Parallel direct solver is 125 times faster on 200 processors.
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Conclusions

The University of Texas at Austin

• We have successfully simulated 3D DLL measurements 
by combining the use of a Fourier series expansion in a 
non-orthogonal system of coordinates with a 2D higher-
order self-adaptive hp finite element method, and by 
using an embedded post-processing method.

• Iterative Solver for Fast 3D Simulation.

• Parallelization of Direct Solver
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Future Work

• Simulation of Non-Zero Dual-Laterolog Measurements

• Simulation of Highly Eccentered Measurements

• Parallelization of Iterative Solver. 

• Multi-Frequency and Time-Domain Simulations

• User Friendly Interface
For setting up DLL tools and formations
For implementing new monitoring conditions

The University of Texas at Austin
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