Physiological and evolutionary modelling in cancer

Tomás Alarcón

Institute for Mathematical Sciences & Department of Mathematics
Imperial College, London

a.tomas@imperial.ac.uk
Outline

Introduction

Physiological modelling: Multiscale modelling of tumour growth

Summary and discussion
Outline

Introduction

Physiological modelling: Multiscale modelling of tumour growth

Summary and discussion
Cancer 101

The set of diseases we globally call cancer consists of disturbances of normal cellular functions which lead to phenotypes able to avoid normal homeostatic controls. Such disturbances are assumed to be genetic in origin and lead to the uncontrolled growth of a cellular population which does not carry out any of the functions of the normal tissue while obliterating resources.
Cancer 101

- The set of diseases we globally call cancer consists of disturbances of normal cellular functions which lead to phenotypes able to avoid normal homeostatic controls. Such disturbances are assumed to be genetic in origin and lead to the uncontrolled growth of a cellular population which does not carry out any of the functions of the normal tissue while obliterating resources.
- During tumour development, disruptions in normal mechanisms appear at all levels of tissue organisation: From genetic abnormalities to aberrant tissue organisation (e.g., abnormal organisation of vasculature, abnormal mechanical properties, etc.).
Cancer 101

- The set of diseases we globally call cancer consists of disturbances of normal cellular functions which lead to phenotypes able to avoid normal homeostatic controls. Such disturbances are assumed to be genetic in origin and lead to the uncontrolled growth of a cellular population which does not carry out any of the functions of the normal tissue while obliterating resources.

- During tumour development, disruptions in normal mechanisms appear at all levels of tissue organisation: From genetic abnormalities to aberrant tissue organisation (eg abnormal organisation of vasculature, abnormal mechanical properties etc.)

- A fundamental aspect of the dynamics of tumour growth is the abnormal physiological conditions to which normal and cancer cells are exposed (eg acidity, hypoxia, etc.) which have rather dramatic effects on the competition between normal and cancer cells.
Cancer 101

- The set of diseases we globally call cancer consists of disturbances of normal cellular functions which lead to phenotypes able to avoid normal homeostatic controls. Such disturbances are assumed to be genetic in origin and lead to the uncontrolled growth of a cellular population which does not carry out any of the functions of the normal tissue while obliterating resources.

- During tumour development, disruptions in normal mechanisms appear at all levels of tissue organisation: From genetic abnormalities to aberrant tissue organisation (e.g., abnormal organisation of vasculature, abnormal mechanical properties, etc.).

- A fundamental aspect of the dynamics of tumour growth is the abnormal physiological conditions to which normal and cancer cells are exposed (e.g., acidity, hypoxia, etc.) which have rather dramatic effects on the competition between normal and cancer cells.

- The formulation of efficient therapeutic strategies has proven, in general, to be a difficult task, as many of the transformations suffered by the normal tissue when becoming cancerous involve resistance mechanisms.
Cancer therapy

- Radio- and chemo-therapy
 - Nasty side effects
 - Delivery protocols that optimise the effect on cancer while minimising side effects on the patient and costs on health system are extremely difficult to design
Cancer therapy

- Radio- and chemo-therapy
 - Nasty side effects
 - Delivery protocols that optimise the effect on cancer while minimising side effects on the patient and costs on health system are extremely difficult to design
- Therapies that seek to target physiological process
 - Anti-angiogenic therapy
Cancer therapy

- Radio- and chemo-therapy
 - Nasty side effects
 - Delivery protocols that optimise the effect on cancer while minimising side effects on the patient and costs on health system are extremely difficult to design
- Therapies that seek to target physiological process
 - Anti-angiogenic therapy
- Therapies that seek to correct particular genetic defects
 - Gene therapy

None of the above are exempt of difficulties, with the latter two presenting problems of their own which will occupy much of this talk.
Cancer as a multiscale process. An example: Angiogenesis

Angiogenesis is the process whereby new vessels are formed by sprouting off the existing vasculature.

- In the absence of oxygen, cells trigger a series of events involving gene expression and signalling (e.g., HIF-1 pathway).
Cancer as a multiscale process. An example: Angiogenesis

Angiogenesis is the process whereby new vessels are formed by sprouting off the existing vasculature.

1. In the absence of oxygen, cells trigger a series of events involving gene expression and signalling (e.g., HIF-1 pathway).
2. This process yields the release of the so-called angiogenic factors (AF), which diffuse into the tissue to reach the native vasculature.
Cancer as a multiscale process. An example: Angiogenesis

Angiogenesis is the process whereby new vessels are formed by sprouting off the existing vasculature.

1. In the absence of oxygen, cells trigger a series of events involving gene expression and signalling (e.g., HIF-1 pathway).

2. This process yields the release of the so-called angiogenic factors (AF), which diffuse into the tissue to reach the native vasculature.

3. These factors, in turn, eventually trigger a massive remodelling of the local vascular systems whereby the existing vasculature undergoes adaptation, new vessels are formed, and blood flow is reorganised.
Cancer as a multiscale process. An example: Angiogenesis

Angiogenesis is the process whereby new vessels are formed by sprouting off the existing vasculature.

- In the absence of oxygen, cells trigger a series of events involving gene expression and signalling (e.g., HIF-1 pathway).
- This process yields the release of the so-called angiogenic factors (AF), which diffuse into the tissue to reach the native vasculature.
- These factors, in turn, eventually trigger a massive remodelling of the local vascular systems whereby the existing vasculature undergoes adaptation, new vessels are formed, and blood flow is reorganised.
- Remodelling the vasculature brings about spatial redistribution of the oxygen, which inhibits AF-producing pathways and stimulates cell proliferation.
Cancer as a multiscale process. An example: Angiogenesis

Angiogenesis is the process whereby new vessels are formed by sprouting off the existing vasculature

1. In the absence of oxygen, cells trigger a series of events involving gene expression and signalling (eg HIF-1 pathway)

2. This process yields the release of the so-called angiogenic factors (AF), which diffuse into the tissue to reach the native vasculature

3. These factors, in turn, eventually trigger a massive remodelling of the local vascular systems whereby the existing vasculature undergoes adaptation, new vessels are formed, and blood flow is reorganised

4. Remodelling the vasculature brings about spatial redistribution of the oxygen, which inhibits AF-producing pathways and stimulates cell proliferation

5. In addition, hypoxia drives evolutionary processes whereby more aggressive varieties (eg metastatic phenotypes) are selected

Take-home message

Processes involving widely different time and length scales are coupled and (dis)regulate each other.
Cancer is an evolutionary process1

Hallmarks of cancer

Cancer is an evolutionary process that occurs in multicellular organisms in which somatic mutations (that is, mutations acquired by the cells upon duplication, not inherited from the parents through the germ line) lead to the breakdown of cell cooperation within the organism.

1Martin Nowak. \textit{Evolutionary dynamics: Exploring the equations of life.}
Cancer is a complex multiscale process, where the disruptions suffered at different levels of tissue organisation (i.e. at different scales) are coupled.
Cancer is a complex multiscale process, where the disruptions suffered at different levels of tissue organisation (i.e. at different scales) are coupled. While analysing each of these levels separately provides useful information, we need to formulate frameworks which account for the coupling between the different levels to properly understand the dynamics of tumour growth and formulate proper therapeutic strategies.
1 Cancer is a complex multiscale process, where the disruptions suffered at different levels of tissue organisation (i.e. at different scales) are coupled.

2 While analysing each of these levels separately provides useful information, we need to formulate frameworks which account for the coupling between the different levels to properly understand the dynamics of tumour growth and formulate proper therapeutic strategies.

3 The only way forward is to formulate mathematical models that allow to integrate the experimental results coming from different sources within a coherent framework.
Outline

Introduction

Physiological modelling: Multiscale modelling of tumour growth

Summary and discussion
What is multiscale modelling about?

Our BlueMotion range combines lighter materials, enhanced aerodynamics, economical engines and tyres that create less friction, which saves you fuel and can reduce your tax, which means you will have more money.
Multiscale modelling: Scales

- The **intracellular scale** involves pathways and processes occurring within one cell (e.g., cell-cycle)
 - Modelled in terms of ordinary differential equations of the corresponding biochemical pathways
- The **cellular scale** involves interactions between cells (e.g., competition for resources and space)
 - Modelled in terms of cellular-automaton-like rules
- The **tissue scale** is related to processes involving a large number of cells (e.g., vascular remodelling, blood flow)
 - Modelled in terms of continuous hydrodynamic equations

Caveats:

- Note that, whilst this subdivision may not be completely accurate from the biological point of view, it constitutes a (first) attempt to rationalisation of the biological complexity allowing for a mathematical approach
Multiscale model for solid tumours

T. Alarcón (IMS, Imperial College, London) Physiology and evolution in cancer

The model is formulated as a hybrid cellular automaton\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice

\(^3\)Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The model is formulated as a hybrid cellular automaton\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms three different factors:

\(^3\)Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The model is formulated as a hybrid cellular automaton\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms of three different factors:
 - The state of their neighbours (through cellular-automaton-like rules)

\[^3\] Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The model is formulated as a hybrid cellular automaton\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms three different factors:
 1. The state of their neighbours (through cellular-automaton-like rules)
 2. Their internal dynamics (through ODE models of biochemical pathways)

\(^3\)Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The model is formulated as a hybrid cellular automaton\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms of three different factors:
 1. The state of their neighbours (through cellular-automaton-like rules)
 2. Their internal dynamics (through ODE models of biochemical pathways)
 3. External fields modulating both of the above (e.g., oxygen concentration modelled by means of reaction-diffusion equations)

\(^3\)Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The model is formulated as a hybrid cellular automaton3

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms three different factors:
 1. The state of their neighbours (through cellular-automaton-like rules)
 2. Their internal dynamics (through ODE models of biochemical pathways)
 3. External fields modulating both of the above (e.g., oxygen concentration modelled by means of reaction-diffusion equations)
- Blood flow and transport of red blood cells (the carriers of oxygen) is explicitly modelled using continuous hydrodynamic models

The model is formulated as a **hybrid cellular automaton**³

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms three different factors:
 1. The state of their neighbours (through cellular-automaton-like rules)
 2. Their internal dynamics (through ODE models of biochemical pathways)
 3. External fields modulating both of the above (eg oxygen concentration modelled by means of reaction-diffusion equations)
- Blood flow and transport of red blood cells (the carriers of oxygen) is explicitly modelled using continuous hydrodynamic models
- Vascular adaptation and growth of the vasculature via angiogenesis in response to signals produced by regions of the tissue under stress is explicitly taken into account

The model is formulated as a **hybrid cellular automaton**\(^3\)

- Normal and cancer cells are represented by elements on a discrete (2D) lattice
- Their behaviour is determined in terms three different factors:
 1. The state of their neighbours (through cellular-automaton-like rules)
 2. Their internal dynamics (through ODE models of biochemical pathways)
 3. External fields modulating both of the above (e.g. oxygen concentration modelled by means of reaction-diffusion equations)
- Blood flow and transport of red blood cells (the carriers of oxygen) is explicitly modelled using continuous hydrodynamic models
- Vascular adaptation and growth of the vasculature via angiogenesis in response to signals produced by regions of the tissue under stress is explicitly taken into account
- Oxygen and signalling cues produced by the tissue are modelled as continuous fields governed by reaction-diffusion equations

\(^3\) Alarcón, Byrne, Maini. Multiscale Model. Sim. 3, 440-475, (2005)
The corresponding pathways are modelled in terms of systems of ODEs and modulated by the extracellular concentration of oxygen.
Model for the cell-cycle

Simple model for the G_1/S transition. $z(r)$ p27 concentration

\[
\frac{dx(r)}{dt} = \frac{(k_3' + k_3'' u(r))(1 - x(r))}{J_3 + 1 - x(r)} - \frac{k_4 m(r) y(r) x(r)}{J_4 + x(r)},
\]
\[
\frac{dy(r)}{dt} = k_1 - (k_2' + k_2'' x(r) + k_2''' z(r)) y(r),
\]
\[
\frac{dm(r)}{dt} = \mu m(r) \left(1 - \frac{m(r)}{m_*}\right),
\]
\[
\frac{dz(r)}{dt} = \chi(m, r) - k_5' \frac{P(r)}{B + P(r)} z(r),
\]
\[
\frac{du(r)}{dt} = k_6' - (k_6' + k_6 y(r)) u(r),
\]
\[v = 1 - u,
\]

- Each cell in our lattice has an internal cell dynamics that determines when it is ready to divide as a function of the local concentration of oxygen, $P(r)$, where r is the position of the corresponding in the lattice.
Modelling scales: The cellular layer

- It deals with competition between normal and cancer cells for space and resources (oxygen)
Modelling scales: The cellular layer

- It deals with competition between normal and cancer cells for space and resources (oxygen)
- The dynamics of the cells is described in terms of cellular-automaton like rules in terms of:

![Cellular Automaton Diagram](image-url)
Modelling scales: The cellular layer

- It deals with competition between normal and cancer cells for space and resources (oxygen).
- The dynamics of the cells is described in terms of cellular-automaton like rules in terms of:
 - The state of neighbouring lattice sites.

![Cellular Automaton Diagram]
Modelling scales: The cellular layer

- It deals with competition between normal and cancer cells for space and resources (oxygen).
- The dynamics of the cells is described in terms of cellular-automaton like rules in terms of:
 - The state of neighbouring lattice sites
 - The internal state of each cell as per its intracellular dynamics
Cell division: coupling to the intracellular layer

1. When a cell completes its cell division cycle, as per the intracellular layer, it checks its surroundings.

2. If at least one of its first-neighbours is unoccupied, it divides and the newly born cell goes to the space most abundant in oxygen. Otherwise, if there is no empty sites, the cell attempting division gets killed.

Cell quiescence

1. Normal cells do not undergo quiescence.

2. Cancer cells are dubbed as quiescence when they are unable to complete the G₁/S transition. Such cells become point sources of VEGF.
Cell death

1. When the levels of intracellular process controlling cell death reaches a given threshold the cell is killed and the space made available.

2. Cancer quiescent cells are killed after a given time span has lapsed.

Fixing the threshold

- The threshold for cell death is fixed according to the occupancy status of the neighbours.
Modelling scales: The vascular layer

- The outcome of this layer is the spatial distribution of red blood cells over the vascular network. This provides a spatially extended, heterogeneously distributed source of oxygen, which then enters the tissue and diffuse over it.
Linking modules: Diffusible species

- Diffusible substances (oxygen and angiogenic factor (VEGF)) are treated as continuous fields and modelled using reaction-diffusion equations.

Diffusible species: Oxygen

- **Source.** The oxygen source is provided by the vascular layer and is proportional to both the amount of red blood cells contained in a given vessel and the perimeter of the vessel.

\[
0 = D_c \nabla^2 C + 2\pi R(r) \mathcal{P}(C_{blood} - C) - k_c(r)C
\]

where \(\mathcal{P} \) is the permeability of the vessel wall and \(R(r) \) is the radius of the vessel if there is one at \(r \) and zero otherwise.
Linking modules: Diffusible species

- Diffusible substances (oxygen and angiogenic factor (VEGF)) are treated as continuous fields and modelled using reaction-diffusion equations.

Diffusible species: Oxygen

- **Source.** The oxygen source is provided by the vascular layer and is proportional to both the amount of red blood cells contained in a given vessel and the perimeter of the vessel.
- **Sinks.** All sites occupied by a cell (either cancer or normal) consumes oxygen at a fixed rate.

\[
0 = D_c \nabla^2 C + 2\pi R(r)P(C_{\text{blood}} - C) - k_c(r)C
\]

where P is the permeability of the vessel wall and $R(r)$ is the radius of the vessel if there is one at r and zero otherwise.
Linking modules: Diffusible species

- Diffusible substances (oxygen and angiogenic factor (VEGF)) are treated as continuous fields and modelled using reaction-diffusion equations.

Diffusible species: Oxygen

- **Source.** The oxygen source is provided by the vascular layer and is proportional to both the amount of red blood cells contained in a given vessel and the perimeter of the vessel.
- **Sinks.** All sites occupied by a cell (either cancer or normal) consumes oxygen at a fixed rate.
- Since oxygen diffusion has a much smaller characteristic time scale than the time scales of the tissue, we consider a quasi-stationary regime in which the dynamics of the oxygen is slaved to the dynamics of the tissue.

\[0 = D_c \nabla^2 C + 2\pi R(r) \mathcal{P}(C_{\text{blood}} - C) - k_c(r) C \]

where \(\mathcal{P} \) is the permeability of the vessel wall and \(R(r) \) is the radius of the vessel if there is one at \(r \) and zero otherwise.
Linking the scales II

Oxygen: Top to bottom
1. Oxygen is provided by the vasculature
2. It regulates cell division (intracellular layer)...
3. ...which in turn regulates cell numbers (cellular layer)
4. When cell numbers become too big, VEGF secretion ensues

VEGF: Bottom to top
1. VEGF is produced by quiescent cells (intra- and cellular layer)
2. It regulates vascular adaptation and angiogenesis (vascular layer)
3. When the vasculature adapts to the corresponding stimulus, oxygen increases and VEGF secretion stops
Results for fixed vascular topology with variable microvascular density\(^4\)

Low MVD

Medium MVD

High MVD

Outline

Introduction

Physiological modelling: Multiscale modelling of tumour growth

Summary and discussion
Summary

- We have formulated a framework that allows to model in detail the physiological conditions under which tumour growth takes place and their influence on the latter process.
- Our model allows to integrate experimental data coming from wide range of different sources under a single model, thus providing extra insight of how different processes described in the experimental literature related to different aspects of tumour growth influence and/or drive each other to produce global behaviour.
- Consequently, emergent properties, such as the results shown relating tumour size to vascular density, may be obtained.
- Although our work so far has focused on hypoxia and angiogenesis, other environmental conditions and the corresponding response can be incorporated in our model.
Acknowledgements

Multiscale modelling developed in collaboration with:

- Helen M. Byrne (Centre for Mathematical Medicine, Nottingham, UK)
- Philip K. Maini (Centre for Mathematical Biology, Oxford, UK)
- Markus R. Owen (Centre for Mathematical Medicine, Nottingham, UK)

Evolutionary modelling developed in collaboration with:

- Henrik J. Jensen (Institute for Mathematical Sciences, Imperial College, London, UK)

Funding from the EPSRC is gratefully acknowledged