Últimas noticias

Ver todo

La gente del BCAM

El investigador de BCAM Matteo Croci, galardonado con el XXVIII Premio SEMA “Antonio Valle” al Joven Investigador 2025

Matteo Croci es investigador Ikerbasque y Ramón y Cajal en el área de Diseño matemático, modelización y simulaciones del Basque Center for Applied Mathematics de Bilbao. El Premio SeMA "Antonio Valle" es otorgado anualmente por la Sociedad Española de Matemática Aplicada (SeMA) a jóvenes...

Sobre el centro

Seminario Científico BCAM «Un enfoque de capacidad compartida para mejorar el rendimiento de las flotas de transporte de pacientes urgente y no urgente».

  • El seminario contó con la participación de Ángel Ruiz Bartolome profesor titular de la Facultad de Administración de Empresas de la Universidad Laval, Canadá.

Sobre el centro

ESGI 188 (European Study Group with Industry) tendrá lugar en Bilbao del 26 al 30 de mayo de 2025

  • ​​​​​​Este evento, organizado por BCAM en colabor

Job Offers

Ver todo

Últimas publicaciones

Ver todo

SOLUTIONS TO THE NONLINEAR OBSTACLE PROBLEM WITH COMPACT CONTACT SETS

Eberle, S.; Yu, H. (2023-01-01)

For the obstacle problem with a nonlinear operator, we character- ize the space of global solutions with compact contact sets. This is achieved by constructing a bijection onto a class of quadratic polynomials describing ...

Normalized gradient flow optimization in the training of ReLU artificial neural networks

Eberle, S.; Jentzen, A.; Riekert, A.; Weiss, G. (2022-01-01)

The training of artificial neural networks (ANNs) is nowadays a highly relevant algorithmic procedure with many applications in science and industry. Roughly speaking, ANNs can be regarded as iterated compositions between ...

COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM

Eberle, S.; Figalli, A.; Weiss, G.S. (2022-01-01)

The characterization of global solutions to the obstacle problems in RN , or equivalently of null quadrature domains, has been studied over more than 90 years. In this paper we give a conclusive answer to this problem by p...

COMPACT CONTACT SETS OF SUB-QUADRATIC SOLUTIONS TO THE THIN OBSTACLE PROBLEM

Eberle, S.; Yu, H. (2023-01-01)

We study global solutions to the thin obstacle problem with at most quadratic growth at infinity. We show that every ellipsoid can be realized as the contact set of such a solution. On the other hand, if such a solution h...