BCAM Course | Non-self-adjoint operators and their spectra

Date: Mon, Jan 29 - Fri, Feb 2 2024

Hour: 11:00-13:00

Location: Basque Center for Applied Mathematics (BCAM)

Speakers: Nico Schiavone

Register: Registration

A 10-hours course consisting of five 2-hours lessons. It will take place at the Basque Center for Applied Mathematics (BCAM).

General objective:
The course aims to present a general overview of spectral theory for non-self-adjoint operators, as well as modern techniques to exclude the presence of their eigenvalues or confine them (as the Birman-Schwinger principle and the multipliers method).

Prerequisite Knowledge:

This course assumes a primer knowledge in linear algebra, real analysis, and functional analysis.


  • Krejčiřík, D. and Siegl, P., 2015. Elements of spectral theory without the spectral theorem. Non- Selfadjoint Operators in Quantum Physics: Mathematical Aspects, pp.241-292.
  • Davies, E.B., 2007. Linear operators and their spectra (Vol. 106). Cambridge University Press.
  • Kenig, C.E., Ruiz, A. and Sogge, C.D., 1987. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Mathematical Journal 55(2), pp.329-347.
  • Hansmann, M. and Krejčiřík, D., 2022. The abstract Birman-Schwinger principle and spectral stability. Journal d'Analyse Mathématique, 148(1), pp.361-398.
  • Frank, R.L., 2011. Eigenvalue bounds for Schrödinger operators with complex potentials. Bulletin of the London Mathematical Society, 43(4), pp.745-750.
  • Fanelli, L., Krejčiřík, D. and Vega, L., 2018. Spectral stability of Schrödinger operators with subordinated complex potentials. Journal of Spectral Theory, 8(2), pp.575-604.
  • Kato, T.,1966. Perturbation theory for linear operators. Springer-Verlag New York.


Registration starts: Nov 12, 2023.

Registration deadline: Jan 19, 2024


Basque Center for Applied Mathematics (BCAM)

Confirmed speakers:

Nico Schiavone