Eventos
Ver todoÚltimas noticias
Ver todoEventos
BCAM organiza con éxito una nueva edición del Symposium on Geometry Processing 2025
La edición 2025 del Symposium on Geometry Processing (SGP) tuvo lugar del 2 al 4 de julio en el Bizkaia Aretoa y reunió a casi 100 participantes de todo el mundo para compartir y explorar investigaciones de vanguardia en el procesamiento de geometría. El evento contó con tres ponencias magistrales...
La gente del BCAM
Sobre el centro
- El certamen se ha celebrado el pasado fin de semana en la Sociedad Bilbaina dentro del marco de Bilbomath, el convenio firmado entre el Ayunta
La gente del BCAM
Mario Martinez will defend his thesis on Wednesday, July 2nd
La defensa tendrá lugar en la Sala Ada Lovelace de la Facultad de Informática del Campus de Donostia de la UPV/EHU a las 11:00 h.
Job Offers
Ver todoÚltimas publicaciones
Ver todoA Unified View of Double-Weighting for Marginal Distribution Shift
Segovia, J.I; Mazuelas, S.; Liu, A. (2025-03-01)
Supervised classification traditionally assumes that training and testing samples are drawn from the same underlying distribution. However, practical scenarios are often affected by distribution shifts, such as covariate and...
Collocation-based robust variational physics-informed neural networks (CRVPINNs)
Paszyński, Maciej; Los, M.; Służalec, T.; Maczuga, P.; Vilkha, A.; Uriarte, C. (2025-09-01)
Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) through strong residual minimization formulations. Their extension to weak scenarios via Variational PINNs (VPINNs...
Concave Grain Boundaries Stabilized by Boron Segregation for Efficient and Durable Oxygen Reduction
Geng, X.; Vega-Paredes, M.; Lu, X.; Chakraborty, P.; Li, Y.; Scheu, C.; Wang, Z.; Gault, B. (2024-09-17)
The oxygen reduction reaction (ORR) is a critical process that limits the efficiency of fuel cells and metal-air batteries due to its slow kinetics, even when catalyzed by platinum (Pt). To reduce Pt usage, enhancing both th...
Multi-task Online Learning for Probabilistic Load Forecasting
Zaballa, O.; Álvarez, V.; Mazuelas, S. (2024-11-01)
Load forecasting is essential for the efficient, reliable, and cost-effective management of power systems. Load forecasting performance can be improved by learning the similarities among multiple entities (e.g., regions, bui...