Azken berriak

Ikusi guztiak

Ekitaldiak

BCAMek 2025eko Symposium on Geometry Processing edizio berri bat antolatu du arrakastaz

Symposium on Geometry Processing-en (SGP) 2025eko edizioa uztailaren 2tik 4ra egin zen Bizkaia Aretoan, eta mundu osoko ia 100 parte-hartzaile baino gehiago bildu ziren geometria prozesatzeko abangoardiako ikerketak partekatzeko eta esploratzeko. Ekitaldian hiru hitzaldi magistral inspiratzaile,…

Zentroari buruz

BCAM-ek arrakastaz amaitu du "VILLA DE BILBAO" piano eta biolin lehiaketaren bigarren edizioa, irabazleei sariak emanez

  • Lehiaketa joan den asteburuan egin zen, Bilbomathen barruan, Bilboko Udalak eta BCAMek sinatutako hitzarmena, talentua erakartzeko nazioartekotzea eta berrikuntza sus

BCAM pertsonak

Mario Martinezek bere tesia defendatuko du uztailaren 2an, asteazkena

Defentsa Donostiako UPV/EHUko Informatika Fakultateko Ada Lovelace aretoan izango da, 11:00etan.

Zentroari buruz

BCAMek Euskaraldiarekin bat egiten du 2025eko edizioan

 

Azken argitalpenak

Ikusi guztiak

A Unified View of Double-Weighting for Marginal Distribution Shift

Segovia, J.I; Mazuelas, S.; Liu, A. (2025-03-01)

Supervised classification traditionally assumes that training and testing samples are drawn from the same underlying distribution. However, practical scenarios are often affected by distribution shifts, such as covariate and...

Collocation-based robust variational physics-informed neural networks (CRVPINNs)

Paszyński, Maciej; Los, M.; Służalec, T.; Maczuga, P.; Vilkha, A.; Uriarte, C. (2025-09-01)

Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) through strong residual minimization formulations. Their extension to weak scenarios via Variational PINNs (VPINNs...

Concave Grain Boundaries Stabilized by Boron Segregation for Efficient and Durable Oxygen Reduction

Geng, X.; Vega-Paredes, M.; Lu, X.; Chakraborty, P.; Li, Y.; Scheu, C.; Wang, Z.; Gault, B. (2024-09-17)

The oxygen reduction reaction (ORR) is a critical process that limits the efficiency of fuel cells and metal-air batteries due to its slow kinetics, even when catalyzed by platinum (Pt). To reduce Pt usage, enhancing both th...

Multi-task Online Learning for Probabilistic Load Forecasting

Zaballa, O.; Álvarez, V.; Mazuelas, S. (2024-11-01)

Load forecasting is essential for the efficient, reliable, and cost-effective management of power systems. Load forecasting performance can be improved by learning the similarities among multiple entities (e.g., regions, bui...