BCAM Course | Tomography bounds in Fourier Analysis

Data: Al, Mar 11 - Or, Mar 15 2024

Ordua: 15:00 - 17:00

Lekua: Maryam Mirzakhani Seminar Room at BCAM and online

Hizlariak: Itamar Oliveira (University of Birmingham)

Erregistroa: Course Webpage and Registration Link

This mini-course aims to introduce and present recent developments on the Mizohata-Takeuchi conjecture for the Fourier extension operator. We informally refer to an inequality which controls some integral taken on Rby integrals taken on lower dimensional subspaces (such as the X-ray transform) as a tomographic bound, and this conjecture is a classical example of such bound. This inequality can be motivated by its connections to well-posedness of some PDEs, as well as to the endpoint multilinear Fourier restriction conjecture. After covering the necessary background, we will motivate and discuss our recent work on a Sobolev variant of Mizohata-Takeuchi, in which a good understanding of the classical Wigner transform plays a crucial role.

  1. Lecture: Harmonic Analysis background

We will cover the basic theory of the Fourier transform in Rn, the Wigner transform, X-ray and Radon transforms, fractional integration and the Kenig-Stein operator.

  1. Lecture: The Fourier restriction problem

We will cover the Stein-Tomas theory and applications to PDE, discuss some of the tools used over the last 50 years to study the restriction conjecture and understant its connection to the Kakeya problems.

  1. Lecture: The Stein and Mizohata-Takeuchi conjectures I

The plan for this lecture is to introduce Stein’s and Mizohata-Takeuchi’s conjectures, build our intuition through simple cases and cover the basics of spherical harmonics and Bessel functions that will be necessary for the next lecture.

  1. Lecture: The Stein and Mizohata-Takeuchi conjectures II

The plan is to verify the Mizohata-Takeuchi conjecture for the sphere when whe underlying weight is radial. This will require the previously covered background on spherical harmonics and Bessel functions.

  1. Lecture: The Sobolev-Mizohata-Takeuchi problem

The plan is to present recent progress in our joint work with Bennett, Gutierrez and Nakamura on a Sobolev version of the Mizohata-Takeuchi problem. This is a weaker version of the conjecture that can be studied in connection with certain nonlinear variants of the Wigner transform and of the Kenig-Stein operator.

References

  1. J. A. Barcel´o, J. Bennett, A. Carbery, A  note  on  localised  weighted  estimates  for  the  extension operatorJ. Aust. Math. Soc. 84 (2008), 289–299.
  2. J.  A.  Barcel´o,   J.  Bennett,   A.  Carbery,   A.  Ruiz,   M.  Vilela,   Some  special  solutions  to  the Schr¨odinger  equation,
  3. J. A. Barcel´o, J. Bennett, A. Ruiz, Spherical  perturbations  of  Schr¨odinger  equations, J. Fourier Analysis and Applications, 12, Issue 3 (2006), 269–290.
  1. J.  A.  Barcel´o,  A.  Ruiz,  L.  Vega,  Weighted  estimates  for  the  Helmholtz  equation  and  conse- quences, Journal of Functional Analysis, Vol. 150 (1997), 356–382.
  2. F. Barthe, On a reverse form of the Brascamp–Lieb inequality, Invent. Math. 134 (1998), 355– 361.
  3. J. Bennett, Aspects of multilinear harmonic analysis related to transversality, Harmonic analysis and partial differential equations, 1–28, Contemp. Math., 612, Amer. Math. Soc., Providence, RI, 2014.
  4. J. Bennett, N. Bez, Higher order transversality in harmonic analysis, RIMS Kˆokyuˆroku Bessatsu B88 (2021), 75–103.
  5. J. Bennett, A. Carbery, F. Soria, A. Vargas, A Stein conjecture for the circle, Math. Ann. 336 (2006), 671–695.
  6. J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), 261–302.
  7. J. Bennett, S. Nakamura, Tomography bounds for the Fourier extension operator and applica- tions, Math. Ann. 380 (2021), 119–159.
  8. S. Dendrinos, A. Mustata, M. Vitturi. A restricted 2-plane transform related to Fourier Restric- tion for surfaces of codimension 2, preprint, 2022.
  9. C. Kenig, E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), 1–15.
  10. E. H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics 14, American Mathematical Society 2001.
  11. S. Mizohata, On the Cauchy Problem, Notes and Reports in Mathematics, Science and Engi- neering, 3, Academic Press, San Diego, CA, 1985.
  12. F. Soto, P. Claverie, When is the Wigner function of multidimensional systems nonnegative?, J. Math. Phys. 24 (1983), 97–100.
  13. R. Schmied, P. Treutlein, Tomographic reconstruction of the Wigner function on the Bloch sphere, New J. Phys. 13 (2011).
  14. E. M. Stein, Some problems in harmonic analysis, Proc. Sympos. Pure Math., Williamstown, Mass., (1978), 3–20.

Antolatzaileak:

Mateus Costa de Sousa (BCAM)

Hizlari baieztatuak:

Itamar Oliveira (University of Birmingham)

 

No incoming events were found.