Errore mezua
To log in to this site, your browser must accept cookies from the domain www.bcamath.org.Ekitaldiak
Ikusi guztiakAzken berriak
Ikusi guztiakBCAM pertsonak
"Antonio Valle" SeMA Saria Matematika Aplikatuko Espainiako Elkarteak (SeMA) urtero ematen da 33 urtetik beherako ikertzaile gazteen lana bikaintasun zientifikoa eta ikerketa matematikoan eragin positiboa izateko duten ahalmena saritzeko. Matteo Croci Ikerbasque eta Ramón y Cajal ikertzailea da…
Zentroari buruz
- Mintegian Ángel Ruiz Bartolome irakasle titularra izan zen Laval Unibertsitateko (Kanada) Enpresen Administrazio Fakultatean.
- Ángel Ruiz Bartolomek María Mer
Zentroari buruz
ESGI 188 (European Study Group with Industry) Bilbon izango da 2025eko maiatzaren 26tik 30era
- BCAMek Bizkaiko Foru Aldundiarekin eta BAT
BCAM pertsonak
- Carlos Uriarte BCAMeko (Diseinu Matematikoa, Modelizazioa eta Simulazioak) Postdoc bekadunak "Ekuazio Diferentzial Partzialen Ebazpena Neurona-sare Artifizialen bidez" izeneko tesia de
Job Offers
Ikusi guztiakAzken argitalpenak
Ikusi guztiakSOLUTIONS TO THE NONLINEAR OBSTACLE PROBLEM WITH COMPACT CONTACT SETS
Eberle, S.; Yu, H. (2023-01-01)
For the obstacle problem with a nonlinear operator, we character- ize the space of global solutions with compact contact sets. This is achieved by constructing a bijection onto a class of quadratic polynomials describing ...
Normalized gradient flow optimization in the training of ReLU artificial neural networks
Eberle, S.; Jentzen, A.; Riekert, A.; Weiss, G. (2022-01-01)
The training of artificial neural networks (ANNs) is nowadays a highly relevant algorithmic procedure with many applications in science and industry. Roughly speaking, ANNs can be regarded as iterated compositions between ...
COMPLETE CLASSIFICATION OF GLOBAL SOLUTIONS TO THE OBSTACLE PROBLEM
Eberle, S.; Figalli, A.; Weiss, G.S. (2022-01-01)
The characterization of global solutions to the obstacle problems in RN , or equivalently of null quadrature domains, has been studied over more than 90 years. In this paper we give a conclusive answer to this problem by p...
COMPACT CONTACT SETS OF SUB-QUADRATIC SOLUTIONS TO THE THIN OBSTACLE PROBLEM
Eberle, S.; Yu, H. (2023-01-01)
We study global solutions to the thin obstacle problem with at most quadratic growth at infinity. We show that every ellipsoid can be realized as the contact set of such a solution. On the other hand, if such a solution h...