Ekitaldiak
Ikusi guztiakAzken berriak
Ikusi guztiakBCAM pertsonak, Emakumeak zientzian
Alejandra Hernandezek uztailaren 21ean defendatuko du bere tesia
Defentsa EHUko Leioako Campuseko Zientzia eta Teknologia Fakultateko Gradu Aretoan izango da, 11:00etan. María Alejandra Hernández Velandia doktoregaia izan da Basque Center for Applied Mathematics (BCAM) zentroan 2020ko urritik, eta Applied Statistics taldean egiten du lan. Bere ikerketaren…
BCAM pertsonak, Emakumeak zientzian
Cristina Galánek bere tesia defendatuko du uztailaren 24an
Defentsa EHUko Leioako Campuseko Zientzia eta Teknologia Fakultateko Gradu Aretoan izango da, 11:00etan.
Ekitaldiak
BCAMek 2025eko Symposium on Geometry Processing edizio berri bat antolatu du arrakastaz
- Symposium on Geometry Processing-en (SGP) 2025eko edizioa uztailaren 2tik 4ra egin zen Bizkaia Aretoan, eta mundu osoko ia 100 parte-hartzaile baino gehiago bildu ziren geometria proze
Zentroari buruz
- Lehiaketa joan den asteburuan egin zen, Bilbomathen barruan, Bilboko Udalak eta BCAMek sinatutako hitzarmena, talentua erakartzeko nazioartekotzea eta berrikuntza sus
Job Offers
Ikusi guztiakAzken argitalpenak
Ikusi guztiakEfficient Localization via Soft Information With Generic Sensing Measurements
Bartoletti, S.; Mazuelas, S.; Conti, A.; Win, M. (2025-06-05)
Accurate location awareness is essential for various context-based applications. This calls for efficient methodologies to collect, communicate and process position-dependent measurements, especially in situations with limit...
Bourgain’s Counterexample in the Sequential Convergence Problem for the Schrödinger Equation
Cho, C.H.; Eceizabarrena, D. (2025-05-08)
We study the problem of pointwise convergence for the Schrödinger operator on $\mathbb R^n$ along time sequences. We show that the sharp counterexample to the sequential Schrödinger maximal estimate given recently by Li, Wan...
A Unified View of Double-Weighting for Marginal Distribution Shift
Segovia, J.I; Mazuelas, S.; Liu, A. (2025-03-01)
Supervised classification traditionally assumes that training and testing samples are drawn from the same underlying distribution. However, practical scenarios are often affected by distribution shifts, such as covariate and...
Collocation-based robust variational physics-informed neural networks (CRVPINNs)
Paszyński, Maciej; Los, M.; Służalec, T.; Maczuga, P.; Vilkha, A.; Uriarte, C. (2025-09-01)
Physics-informed neural networks (PINNs) have been widely used to solve partial differential equations (PDEs) through strong residual minimization formulations. Their extension to weak scenarios via Variational PINNs (VPINNs...